This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126246 #41 May 06 2025 17:10:14 %S A126246 1,2,2,3,4,4,6,6,6,8,10,6,12,12,8,12,16,12,18,12,12,20,22,12,20,24,18, %T A126246 18,28,16,30,24,20,32,24,18,36,36,24,24,40,24,42,30,24,44,46,24,42,40, %U A126246 32,36,52,36,40,36,36,56,58,24,60,60,36,48,48,40,66,48,44,48,70,36,72 %N A126246 a(n) is the number of Fibonacci numbers among (F(1),F(2),F(3),...,F(n)) which are coprime to F(n), where F(n) is the n-th Fibonacci number. %H A126246 Harvey P. Dale, <a href="/A126246/b126246.txt">Table of n, a(n) for n = 1..1000</a> %F A126246 Equals A054523 * (1, 1, 0, 0, 0, ...). - _Gary W. Adamson_, Apr 17 2007 %F A126246 From _Jud McCranie_, Nov 11 2017: (Start) %F A126246 Multiplicative with a(p^e) = phi(p^e) = p^(e-1)*(p - 1), except when p = 2, then a(2) = 2, because F(1) = F(2) = 1 and a(2^e) = 3*(2^(e-2)), (e > 1, all smaller Fibonacci numbers are coprime, except ones that are multiples of 3, i.e., every 4th one). %F A126246 If n is odd, then a(n) = phi(n) (Euler's totient function). %F A126246 If n is a multiple of 4 then a(n) = 3*phi(n)/2. %F A126246 If n is congruent to 2 mod 4 then a(n) = 2*phi(n). (End) %F A126246 From _Amiram Eldar_, Aug 21 2023: (Start) %F A126246 Dirichlet g.f.: (1 + 1/2^s) * zeta(s-1)/zeta(s). %F A126246 Sum_{k = 1..n} a(k) ~ c * n^2, where c = 15/(4*Pi^2) = 0.379954... . (End) %F A126246 From _Peter Bala_, Dec 31 2023: (Start) %F A126246 a(n) = Sum_{k = 1..n, gcd(k,n) = 1 or 2} 1 (since gcd(F(k),F(n)) = F(gcd(k,n)) = 1 iff gcd(k,n) = 1 or 2). Cf. phi(n) = A000010(n) = Sum_{k = 1..n, gcd(k,n) = 1} 1. See also A345082. %F A126246 Sum_{d divides n} a(d) = n if n is odd, else 3*n/2 if n is even. See A080512. %F A126246 The Lambert series Sum_{n >= 1} a(n)*x^n/(1 - x^n) = (1 + 3*x + x^2)/(1 - x^2)^2. %F A126246 If n divides m then a(n) divides 2*a(m). (End) %F A126246 a(n) = Sum_{d|gcd(n,2)} phi(n/d). - _Ridouane Oudra_, May 06 2025 %e A126246 F(12) = 144. The six Fibonacci numbers which are coprime to 144 and are <= 144 are F(1) = 1, F(2) = 1, F(5) = 5, F(7) = 13, F(10) = 55 and F(11) = 89. So a(12) = 6. %e A126246 The six numbers k = 1, 2, 5, 7, 10 and 11 are <= 12 and satisfy gcd(k,12) divides 2. So a(12) = 6. - _Peter Bala_, Dec 31 2023 %p A126246 with(combinat): a:=proc(n) local ct,i: ct:=0: for i from 1 to n do if gcd(fibonacci(i),fibonacci(n))=1 then ct:=ct+1 else ct:=ct fi: od: ct: end: seq(a(n),n=1..90); # _Emeric Deutsch_, Mar 24 2007 %p A126246 # alternative program based on the above %p A126246 with(numtheory): a := proc(n) local ct, i: ct := 0: for i from 1 to n do if gcd(i,n) in divisors(2) then ct := ct + 1 else ct := ct fi: od: ct: end: seq(a(n), n = 1..90); # _Peter Bala_, Dec 31 2023 %t A126246 Table[Count[CoprimeQ[Fibonacci[n],#]&/@Fibonacci[Range[n]],True],{n,80}] (* _Harvey P. Dale_, Mar 09 2013 *) %t A126246 a[n_] := {1, 2, 1, 3/2}[[Mod[n, 4, 1]]]*EulerPhi[n]; Array[a, 100] (* _Amiram Eldar_, Aug 21 2023 *) %o A126246 (PARI) a(n) = sum(k=1, n, gcd(fibonacci(k), fibonacci(n)) == 1); \\ _Michel Marcus_, Nov 13 2017 %Y A126246 Cf. A000010, A000045, A054523, A080512, A345082. %K A126246 nonn,mult,easy %O A126246 1,2 %A A126246 _Leroy Quet_, Mar 08 2007 %E A126246 More terms from _Emeric Deutsch_, Mar 24 2007 %E A126246 More terms from _Gary W. Adamson_, Apr 17 2007