cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126246 a(n) is the number of Fibonacci numbers among (F(1),F(2),F(3),...,F(n)) which are coprime to F(n), where F(n) is the n-th Fibonacci number.

This page as a plain text file.
%I A126246 #41 May 06 2025 17:10:14
%S A126246 1,2,2,3,4,4,6,6,6,8,10,6,12,12,8,12,16,12,18,12,12,20,22,12,20,24,18,
%T A126246 18,28,16,30,24,20,32,24,18,36,36,24,24,40,24,42,30,24,44,46,24,42,40,
%U A126246 32,36,52,36,40,36,36,56,58,24,60,60,36,48,48,40,66,48,44,48,70,36,72
%N A126246 a(n) is the number of Fibonacci numbers among (F(1),F(2),F(3),...,F(n)) which are coprime to F(n), where F(n) is the n-th Fibonacci number.
%H A126246 Harvey P. Dale, <a href="/A126246/b126246.txt">Table of n, a(n) for n = 1..1000</a>
%F A126246 Equals A054523 * (1, 1, 0, 0, 0, ...). - _Gary W. Adamson_, Apr 17 2007
%F A126246 From _Jud McCranie_, Nov 11 2017: (Start)
%F A126246 Multiplicative with a(p^e) = phi(p^e) = p^(e-1)*(p - 1), except when p = 2, then a(2) = 2, because F(1) = F(2) = 1 and a(2^e) = 3*(2^(e-2)), (e > 1, all smaller Fibonacci numbers are coprime, except ones that are multiples of 3, i.e., every 4th one).
%F A126246 If n is odd, then a(n) = phi(n) (Euler's totient function).
%F A126246 If n is a multiple of 4 then a(n) = 3*phi(n)/2.
%F A126246 If n is congruent to 2 mod 4 then a(n) = 2*phi(n). (End)
%F A126246 From _Amiram Eldar_, Aug 21 2023: (Start)
%F A126246 Dirichlet g.f.: (1 + 1/2^s) * zeta(s-1)/zeta(s).
%F A126246 Sum_{k = 1..n} a(k) ~ c * n^2, where c = 15/(4*Pi^2) = 0.379954... . (End)
%F A126246 From _Peter Bala_, Dec 31 2023: (Start)
%F A126246 a(n) = Sum_{k = 1..n, gcd(k,n) = 1 or 2} 1 (since gcd(F(k),F(n)) = F(gcd(k,n)) = 1 iff gcd(k,n) = 1 or 2). Cf. phi(n) = A000010(n) = Sum_{k = 1..n, gcd(k,n) = 1} 1. See also A345082.
%F A126246 Sum_{d divides n} a(d) = n if n is odd, else 3*n/2 if n is even. See A080512.
%F A126246 The Lambert series Sum_{n >= 1} a(n)*x^n/(1 - x^n) = (1 + 3*x + x^2)/(1 - x^2)^2.
%F A126246 If n divides m then a(n) divides 2*a(m). (End)
%F A126246 a(n) = Sum_{d|gcd(n,2)} phi(n/d). - _Ridouane Oudra_, May 06 2025
%e A126246 F(12) = 144. The six Fibonacci numbers which are coprime to 144 and are <= 144 are F(1) = 1, F(2) = 1, F(5) = 5, F(7) = 13, F(10) = 55 and F(11) = 89. So a(12) = 6.
%e A126246 The six numbers k = 1, 2, 5, 7, 10 and 11 are <= 12 and satisfy gcd(k,12) divides 2. So a(12) = 6. - _Peter Bala_, Dec 31 2023
%p A126246 with(combinat): a:=proc(n) local ct,i: ct:=0: for i from 1 to n do if gcd(fibonacci(i),fibonacci(n))=1 then ct:=ct+1 else ct:=ct fi: od: ct: end: seq(a(n),n=1..90); # _Emeric Deutsch_, Mar 24 2007
%p A126246 # alternative program based on the above
%p A126246 with(numtheory): a := proc(n) local ct, i: ct := 0: for i from 1 to n do if gcd(i,n) in divisors(2) then ct := ct + 1 else ct := ct fi: od: ct: end: seq(a(n), n = 1..90); # _Peter Bala_, Dec 31 2023
%t A126246 Table[Count[CoprimeQ[Fibonacci[n],#]&/@Fibonacci[Range[n]],True],{n,80}] (* _Harvey P. Dale_, Mar 09 2013 *)
%t A126246 a[n_] := {1, 2, 1, 3/2}[[Mod[n, 4, 1]]]*EulerPhi[n]; Array[a, 100] (* _Amiram Eldar_, Aug 21 2023 *)
%o A126246 (PARI) a(n) = sum(k=1, n, gcd(fibonacci(k), fibonacci(n)) == 1); \\ _Michel Marcus_, Nov 13 2017
%Y A126246 Cf. A000010, A000045, A054523, A080512, A345082.
%K A126246 nonn,mult,easy
%O A126246 1,2
%A A126246 _Leroy Quet_, Mar 08 2007
%E A126246 More terms from _Emeric Deutsch_, Mar 24 2007
%E A126246 More terms from _Gary W. Adamson_, Apr 17 2007