cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126252 Wavenumbers of red, turquoise, blue, indigo and violet in the spectrum of hydrogen, as first measured by Robert Bunsen and Gustav Kirchhoff in 1859.

This page as a plain text file.
%I A126252 #8 Dec 06 2014 18:11:59
%S A126252 1523310,2056410,2303240,2437290,2518130
%N A126252 Wavenumbers of red, turquoise, blue, indigo and violet in the spectrum of hydrogen, as first measured by Robert Bunsen and Gustav Kirchhoff in 1859.
%C A126252 How Johann Jakob Ballmer found his formula in 1885 by analyzing and manipulating the ratios of these data:
%C A126252 r(1) = a(1)/a(1) = 1,
%C A126252 a(2)/a(1) = 1.349961..., rounded: r(2) = 135/100 = 27/20,
%C A126252 a(3)/a(1) = 1.511996..., rounded: r(3) = 1512/1000 = 189/125,
%C A126252 a(4)/a(1) = 1.599996..., rounded: r(4) = 16/10 = 8/5,
%C A126252 a(5)/a(1) = 1.6530647..., r(5) = 81/49 = 2-1/(3-1/(9-1/2)), derived from a(5)/a(1) = 2-1/(3-1/(9-3095/6216)) when replacing 3095/6216 by 1/2;
%C A126252 the multiplication of these fractions by 5/36 is the key trick to get more handy figures to see eventually increasing squares in the denominators by an appropriate expansion:
%C A126252 b(1) = r(1)*5/36 = 5 / 36,
%C A126252 b(2) = r(2)*5/36 = 3 / 16,
%C A126252 b(3) = r(3)*5/36 = 21 / 100,
%C A126252 b(4) = r(4)*5/36 = 2 / 9,
%C A126252 b(5) = r(5)*5/36 = 45 / 196;
%C A126252 ... b(1) .|.... b(2) ..|.... b(3) ..|.... b(4) ..|.... b(5),
%C A126252 ... 5/36 .|.... 3/16 ..|... 21/100 .|.... 2/9 ...|... 45/196,
%C A126252 ... 5/36 .|... 12/64 ..|... 21/100 .|... 32/144 .|... 45/196,
%C A126252 (9-4)/9*4 |(16-4)/16*4 |(25-4)/25*4 |(36-4)/36*4 |(49-4)/49*4,
%C A126252 this last step was the crowning achievement: the discovery of the pattern (x-y)/x*y,
%C A126252 b(n) = ((n+2)^2 - 4)/(4*(n+2)^2) = 1/4 - 1/(n+2)^2;
%C A126252 1<=n<=5: b(n) = A061037(n+2)/A061038(n+2) = A120072(n+2,2)/A120073(n+2,2).
%D A126252 R. Taschner, Der Zahlen gigantischer Schatten, Vieweg 2005, 137-143.
%H A126252 Science Trek, <a href="http://www.colorado.edu/physics/2000/quantumzone/balmer.html">Balmer Formula</a>
%H A126252 Eric Weisstein's World of Physics, <a href="http://scienceworld.wolfram.com/physics/BalmerFormula.html">Balmer Formula</a>
%H A126252 Wikipedia, <a href="http://en.wikipedia.org/wiki/Empirical_formula">Empirical formula</a>
%H A126252 Wikipedia, <a href="http://en.wikipedia.org/wiki/Johann_Jakob_Balmer">Johann Jakob Balmer</a>
%H A126252 Wikipedia, <a href="http://en.wikipedia.org/wiki/Bunsen">Robert Wilhelm Bunsen</a>
%H A126252 Wikipedia, <a href="http://en.wikipedia.org/wiki/Gustav_Kirchhoff">Gustav Robert Kirchhoff</a>
%K A126252 nonn,fini,full
%O A126252 1,1
%A A126252 _Reinhard Zumkeller_, Dec 22 2006