cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126255 Number of distinct terms i^j for 2 <= i,j <= n.

Original entry on oeis.org

1, 4, 8, 15, 23, 34, 44, 54, 69, 88, 106, 129, 152, 177, 195, 226, 256, 291, 324, 361, 399, 442, 483, 519, 564, 600, 648, 703, 755, 814, 856, 915, 976, 1039, 1085, 1156, 1224, 1295, 1365, 1444, 1519, 1602, 1681, 1762, 1846, 1937, 2023, 2095, 2184, 2279
Offset: 2

Views

Author

Nick Hobson, Dec 24 2006

Keywords

Comments

An easy upper bound is (n-1)^2 = A000290(n-1).

Examples

			a(4) = 8 as there are 8 distinct terms in 2^2=4, 2^3=8, 2^4=16, 3^2=9, 3^3=27, 3^4=81, 4^2=16, 4^3=64, 4^4=256.
		

Crossrefs

Programs

  • Mathematica
    SetAttributes[a, {Listable, NumericFunction}]
    a[n_ /; n < 2] := "error"
    a[2] := 1
    a[n_Integer?IntegerQ /; n > 2] :=
     Length[DeleteDuplicates[
       Distribute[f[Range[2, n], Range[2, n]], List,
         f] /. {f ->
          Power}]](*By using Distribute instead of Outer I avoid having to use Flatten on Outer*)
    a[Range[2, 100]]
    (* Peter Cullen Burbery, Aug 15 2023 *)
  • PARI
    lim=51; z=listcreate((lim-1)^2); for(m=2, lim, for(i=2, m, x=factor(i); x[, 2]*=m; s=Str(x); f=setsearch(z, s, 1); if(f, listinsert(z, s, f))); t=factor(m); for(j=2, m, x=t; x[, 2]=j*t[, 2]; s=Str(x); f=setsearch(z, s, 1); if(f, listinsert(z, s, f))); print1(#z, ", "))
    
  • Python
    def A126255(n): return len({i**j for i in range(2,n+1) for j in range(2,n+1)}) # Chai Wah Wu, Oct 17 2023