cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126263 List of primes generated by factoring successive integers in Sylvester's sequence (A000058).

This page as a plain text file.
%I A126263 #60 Sep 09 2024 16:07:31
%S A126263 2,3,7,43,13,139,3263443,547,607,1033,31051,29881,67003,9119521,
%T A126263 6212157481,5295435634831,31401519357481261,77366930214021991992277,
%U A126263 181,1987,112374829138729,114152531605972711,35874380272246624152764569191134894955972560447869169859142453622851
%N A126263 List of primes generated by factoring successive integers in Sylvester's sequence (A000058).
%C A126263 The list is infinite and no term repeats since Sylvester's sequence is an infinite coprime sequence.
%C A126263 However, it appears to be unknown whether all terms in A000058 are squarefree. - _Jeppe Stig Nielsen_, Apr 23 2020
%D A126263 Barry Mazur and William Stein, Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016. See p. 9.
%H A126263 Ray Chandler, <a href="/A126263/b126263.txt">Table of n, a(n) for n = 1..28</a> (first 27 terms from William Stein)
%H A126263 J. K. Andersen, <a href="http://primerecords.dk/sylvester-factors.htm">Factorization of Sylvester's sequence</a>.
%H A126263 Filip Saidak, <a href="https://t5k.org/notes/proofs/infinite/Saidak.html">Proof of Euclid's Theorem</a>.
%H A126263 Filip Saidak, <a href="http://www.jstor.org/stable/27642094">A New Proof of Euclid's Theorem</a>, Amer. Math. Monthly, Dec. 2006.
%e A126263 2 = 2, 3 = 3, 7 = 7, 43 = 43, 1807 = 13 * 139, 3263443 = 3263443,
%e A126263 10650056950807 = 547 * 607 * 1033 * 31051,
%e A126263 113423713055421844361000443 = 29881 * 67003 * 9119521 * 6212157481,
%e A126263 12864938683278671740537145998360961546653259485195807 = 5295435634831 * 31401519357481261 * 77366930214021991992277.
%e A126263 165506647324519964198468195444439180017513152706377497841851388766535868639572406808911988131737645185443 = 181 * 1987 * 112374829138729 * 114152531605972711 * 35874380272246624152764569191134894955972560447869169859142453622851. - _Jonathan Sondow_, Jan 26 2014
%p A126263 a(0):=2; for n from 0 to 8 do a(n+1):=a(n)^2-a(n)+1;ifactor(%); od;
%t A126263 Flatten[FactorInteger[NestList[#^2 - # + 1 &, 2, 8]][[All, All, 1]]] (* _Paolo Xausa_, Sep 09 2024 *)
%o A126263 (Sage)
%o A126263 v = [2]
%o A126263 for n in range(12):
%o A126263     v.append(v[-1]^2-v[-1]+1)
%o A126263     print(prime_divisors(v[-1])) # William Stein, Aug 26 2009
%o A126263 (PARI)
%o A126263 v=[2]; for(i=1,10, v=concat(v,Set(factor(vecprod(v)+1)[,1]))); v \\ _Charles R Greathouse IV_, Oct 02 2014
%Y A126263 Cf. A000058, A007996, A236433.
%K A126263 nonn
%O A126263 1,1
%A A126263 Howard L. Warth (hlw6c2(AT)umr.edu), Dec 22 2006
%E A126263 Offset corrected by _N. J. A. Sloane_, Aug 20 2009
%E A126263 a(23)-a(27) from William Stein (wstein(AT)gmail.com), Aug 20 2009, Aug 21 2009
%E A126263 a(17) corrected by _D. S. McNeil_, Dec 10 2010
%E A126263 b-file updated at the suggestion of _Hans Havermann_ by _Ray Chandler_, Feb 27 2015