This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126269 #10 Aug 06 2019 21:42:26 %S A126269 3,4,9,10,21,22,45,46,93,94,189,190,381,382,765,766,1533,1534,3069, %T A126269 3070,6141,6142,12285,12286,24573,24574,49149,49150 %N A126269 Numbers n such that hcl(n,n) < hcl(n,n-1) where hcl(n,i) is the Huffman code length; see comments. %C A126269 Consider a string which consists of n distinct symbols such that symbol(i) has frequency i (i=1,2,...,n). Then hcl(n,i) is the Huffman code length of symbol(i). %H A126269 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a126/A126269.java">Java program</a> (github) %F A126269 Conjecture: a(2k) = A033484(k-1) and a(2k-1) = A068156(k-1), k >= 2. %F A126269 Conjectures from _Colin Barker_, Aug 06 2019: (Start) %F A126269 G.f.: x^3*(3 + 4*x - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x^2)). %F A126269 a(n) = 3*a(n-2) - 2*a(n-4) for n>6. %F A126269 a(n) = -5/2 + (-1)^n/2 + 3*2^((1/2)*(n-5))*(2-2*(-1)^n + sqrt(2) + (-1)^n*sqrt(2)) for n>2. %F A126269 (End) %e A126269 Possible Huffman codes for n = 3,4,5 are: %e A126269 1 : 00 %e A126269 2 : 01 %e A126269 3 : 1 %e A126269 -------- %e A126269 1 : 100 %e A126269 2 : 101 %e A126269 3 : 11 %e A126269 4 : 0 %e A126269 -------- %e A126269 1 : 000 %e A126269 2 : 001 %e A126269 3 : 01 %e A126269 4 : 10 %e A126269 5 : 11 %e A126269 hcl(3,3)=1 < 2=hcl(3,2) and hcl(4,4)=1 < 2=hcl(4,3); so 3,4 are in the sequence. %e A126269 hcl(5,5)=2=hcl(5,4) so 5 is not in the sequence. %Y A126269 Cf. A126268 A126014 A068156 A033484. %K A126269 easy,nonn %O A126269 3,1 %A A126269 Serhat Sevki Dincer (mesti_mudam(AT)yahoo.com), Dec 22 2006 %E A126269 More terms from _Sean A. Irvine_, Aug 05 2019