This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126279 #34 Feb 16 2025 08:33:04 %S A126279 1,2,1,4,2,1,6,6,2,1,11,10,7,2,1,18,22,13,7,2,1,31,42,30,14,7,2,1,54, %T A126279 82,60,34,15,7,2,1,97,157,125,71,36,15,7,2,1,172,304,256,152,77,37,15, %U A126279 7,2,1,309,589,513,325,168,81,37,15,7,2,1,564,1124,1049,669,367,177,83,37 %N A126279 Triangle read by rows: T(k,n) is number of numbers <= 2^n that are products of k primes. %D A126279 Adolf Hildebrand, On the number of prime factors of an integer. Ramanujan revisited (Urbana-Champaign, Ill., 1987), 167 - 185, Academic Press, Boston, MA, 1988. %D A126279 Edmund Georg Hermann Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 205 - 211. %H A126279 Jonathan Vos Post & Robert G. Wilson v, <a href="/A126279/b126279.txt">Table of n, a(n) for n = 1..1330</a> %H A126279 Jonathan Vos Post & Robert G. Wilson v, <a href="/A126279/a126279.txt">Regular Triangle of A126279 for the first 52 rows, with some holes.</a> %H A126279 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Semiprime.html">Semiprime</a>. %H A126279 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlmostPrime.html">Almost Prime</a>. %e A126279 Triangle begins: %e A126279 1 %e A126279 2 1 %e A126279 4 2 1 %e A126279 6 6 2 1 %e A126279 11 10 7 2 1 %e A126279 18 22 13 7 2 1 %e A126279 31 42 30 14 7 2 1 %e A126279 54 82 60 34 15 7 2 1 %e A126279 97 157 125 71 36 15 7 2 1 %e A126279 172 304 256 152 77 37 15 7 2 1 %t A126279 AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[ n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[ Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* _Eric W. Weisstein_, Feb 07 2006 *) %t A126279 Table[ AlmostPrimePi[m, 2^n], {n, 16}, {m, n}] // Flatten %Y A126279 First column: A007053, second column: A125527, third column: A127396, 4th column: A334069. The last row reversed: A052130; the n-th row's sum: A000225 = 2^n -1. %Y A126279 Cf. A126280: same array but for powers of ten. %K A126279 tabl,less,nonn %O A126279 1,2 %A A126279 _Jonathan Vos Post_ & _Robert G. Wilson v_, Dec 22 2006