This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126285 #31 Nov 28 2023 08:51:27 %S A126285 1,2,6,16,45,121,338,929,2598,7261,20453,57738,163799,465778,1328697, %T A126285 3798473,10883314,31237935,89812975,258595806,745563123,2152093734, %U A126285 6218854285,17988163439,52078267380,150899028305,437571778542,1269754686051,3687025215421 %N A126285 Number of partial mappings (or mapping patterns) from n points to themselves; number of partial endofunctions. %C A126285 If an endofunction is partial, then some points may be unmapped (or mapped to "undefined"). %C A126285 The labeled version is left-shifted A000169. - _Franklin T. Adams-Watters_, Jan 16 2007 %H A126285 Alois P. Heinz, <a href="/A126285/b126285.txt">Table of n, a(n) for n = 0..750</a> %H A126285 R. I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier, <a href="http://arxiv.org/abs/1512.00906">What are Butcher series, really? The story of rooted trees and numerical methods for evolution equations</a>, arXiv preprint arXiv:1512.00906 [math.NA], 2015-2017. %H A126285 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A126285 Euler transform of A002861 + A000081 = [1, 2, 4, 9, 20, 51, 125, 329, 862, 2311, ... ] + [ 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, ...] = A124682. %F A126285 Convolution of left-shifted A000081 with A001372. - _Franklin T. Adams-Watters_, Jan 16 2007 %F A126285 a(n) ~ c * d^n / sqrt(n), where d = 2.95576528565... is the Otter's rooted tree constant (see A051491) and c = 1.309039781943936352117502717... - _Vaclav Kotesovec_, Mar 29 2014 %t A126285 nmax = 28; %t A126285 a81[n_] := a81[n] = If[n<2, n, Sum[Sum[d*a81[d], {d, Divisors[j]}]*a81[n-j ], {j, 1, n-1}]/(n-1)]; %t A126285 A[n_] := A[n] = If[n<2, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1} ]/(n-1)]; %t A126285 H[t_] := Sum[A[n]*t^n, {n, 0, nmax+2}]; %t A126285 F = 1/Product[1 - H[x^n], {n, 1, nmax+2}] + O[x]^(nmax+2); %t A126285 A1372 = CoefficientList[F, x]; %t A126285 a[n_] := Sum[a81[k] * A1372[[n-k+2]], {k, 0, n+1}]; %t A126285 Table[a[n], {n, 0, nmax}] (* _Jean-François Alcover_, Aug 18 2018, after _Franklin T. Adams-Watters_ *) %o A126285 (Sage) %o A126285 Pol.<t> = InfinitePolynomialRing(QQ) %o A126285 @cached_function %o A126285 def Z(n): %o A126285 if n==0: return Pol.one() %o A126285 return sum(t[k]*Z(n-k) for k in (1..n))/n %o A126285 def pmagmas(n,k=1): # number of partial k-magmas on a set of n elements up to isomorphism %o A126285 P = Z(n) %o A126285 q = 0 %o A126285 coeffs = P.coefficients() %o A126285 count = 0 %o A126285 for m in P.monomials(): %o A126285 p = 1 %o A126285 V = m.variables() %o A126285 T = cartesian_product(k*[V]) %o A126285 for t in T: %o A126285 r = [Pol.varname_key(str(u))[1] for u in t] %o A126285 j = [m.degree(u) for u in t] %o A126285 D = 1 %o A126285 lcm_r = lcm(r) %o A126285 for d in divisors(lcm_r): %o A126285 try: D += d*m.degrees()[-d-1] %o A126285 except: break %o A126285 p *= D^(prod(r)/lcm_r*prod(j)) %o A126285 q += coeffs[count]*p %o A126285 count += 1 %o A126285 return q %o A126285 # _Philip Turecek_, Nov 27 2023 %Y A126285 Cf. A001372. %Y A126285 Cf. A000169, A000081, A002861. %K A126285 nonn %O A126285 0,2 %A A126285 _Christian G. Bower_, Dec 25 2006 based on a suggestion from _Jonathan Vos Post_