cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126307 a(n) is the length of the leftmost ascent (i.e., height of the first peak) in the n-th Dyck path encoded by A014486(n).

This page as a plain text file.
%I A126307 #7 Jul 22 2017 08:32:36
%S A126307 0,1,1,2,1,1,2,2,3,1,1,1,1,1,2,2,2,2,2,3,3,3,4,1,1,1,1,1,1,1,1,1,1,1,
%T A126307 1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,5,1,1,1,
%U A126307 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N A126307 a(n) is the length of the leftmost ascent (i.e., height of the first peak) in the n-th Dyck path encoded by A014486(n).
%C A126307 In other words, this sequence gives the number of leading 1's in the terms of A063171.
%F A126307 a(n) = A090996(A014486(n)).
%e A126307 A014486(20) = 228 (11100100 in binary), encodes the following Dyck path:
%e A126307     /\
%e A126307    /  \/\
%e A126307   /      \
%e A126307 and the first rising (left-hand side) slope has length 3, thus a(20)=3.
%Y A126307 a(n) = A099563(A071156(n)) = A057515(A125985(n)) = A080237(A057164(n)) = A057515(A057504(A057164(n))).
%K A126307 nonn
%O A126307 0,4
%A A126307 _Antti Karttunen_, Jan 02 2007