This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126347 #30 Jul 11 2025 17:43:21 %S A126347 1,1,1,1,1,2,1,1,1,3,3,4,2,1,1,1,4,6,10,9,7,7,4,2,1,1,1,5,10,20,25,26, %T A126347 29,26,20,14,12,7,4,2,1,1,1,6,15,35,55,71,90,101,100,89,82,68,53,38, %U A126347 26,20,12,7,4,2,1,1,1,7,21,56,105,161,231,302,356,379,392,384,358,314,262 %N A126347 Triangle, read by rows, where row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n). %C A126347 Limit of reversed rows equals A126348. Largest term in rows equal A126349. %H A126347 Alois P. Heinz, <a href="/A126347/b126347.txt">Rows n = 0..60, flattened</a> %H A126347 Carl G. Wagner, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL7/Wagner/wagner3.html">Partition Statistics and q-Bell Numbers (q = -1)</a>, J. Integer Seqs., Vol. 7, 2004. %F A126347 G.f. for row n: B(n,q) = 1/E_q*{0^n + Sum_{k>=1} [(q^k-1)/(q-1)]^n / q-Factorial(k)}, where q-Factorial(k) = Product_{j=1..k} [(q^j-1)/(q-1)] and where E_q = Sum_{n>=0} 1/q-Factorial(n) = Product_{n>=1} (1+(q-1)/q^n). %F A126347 Sum_{k=0..n*(n-1)/2} (n+k) * T(n,k) = A346772(n). - _Alois P. Heinz_, Aug 02 2021 %F A126347 Conjecture: R(n,n) is the (n+1)-th reversed row polynomial where R(0,0) = 1, R(n,k) = R(n-1,n-1) + x^n * Sum_{j=0..k-1} R(n-1,j) for 0 <= k <= n. - _Mikhail Kurkov_, Jul 06 2025 %e A126347 Number of terms in row n is: n*(n-1)/2 + 1. %e A126347 Row functions B(n,q) begin: %e A126347 B(0,q) = 1; %e A126347 B(1,q) = 1; %e A126347 B(2,q) = 1 + q; %e A126347 B(3,q) = 1 + 2*q + q^2 + q^3; %e A126347 B(4,q) = 1 + 3*q + 3*q^2 + 4*q^3 + 2*q^4 + q^5 + q^6. %e A126347 Triangle begins: %e A126347 1; %e A126347 1; %e A126347 1, 1; %e A126347 1, 2, 1, 1; %e A126347 1, 3, 3, 4, 2, 1, 1; %e A126347 1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1; %e A126347 1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1; %e A126347 1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1; %e A126347 ... %p A126347 b:= proc(n, m, t) option remember; `if`(n=0, x^t, %p A126347 add(b(n-1, max(m, j), t+j) , j=1..m+1)) %p A126347 end: %p A126347 T:= n-> (p-> seq(coeff(p, x, i), i=n..degree(p)))(b(n, 0$2)): %p A126347 seq(T(n), n=0..8); # _Alois P. Heinz_, Aug 02 2021 %t A126347 B[0, _] = 1; B[n_, q_] := B[n, q] = Sum[Binomial[n-1, k] B[k, q] q^k, {k, 0, n-1}] // Expand; Table[CoefficientList[B[n, q], q], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Nov 08 2016 *) %o A126347 (PARI) {B(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*B(k,q)*q^k))} %o A126347 row(n)={Vec(B(n, 'q)+O('q^(n*(n-1)/2+1)))} %o A126347 (PARI) /* Alternative formula for the n-th q-Bell number (row n): */ {B(n,q)=local(inf=100);round((0^n + sum(k=1, inf,((q^k-1)/(q-1))^n/prod(i=1,k,(q^i-1)/(q-1)))) / prod(k=1, inf,1 + (q-1)/q^k))} %Y A126347 Row sums give A000110. %Y A126347 Cf. A126348, A126349; factorial variant: A126470. %Y A126347 Cf. A346772. %K A126347 nonn,tabf %O A126347 0,6 %A A126347 _Paul D. Hanna_, Dec 31 2006, May 28 2007 %E A126347 Keyword:tabl changed to tabf by _R. J. Mathar_, Oct 21 2010