cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126348 Limit of reversed rows of triangle A126347, in which row sums equal Bell numbers (A000110).

This page as a plain text file.
%I A126348 #30 Nov 12 2024 19:22:21
%S A126348 1,1,2,4,7,12,20,33,53,84,131,202,308,465,695,1030,1514,2209,3201,
%T A126348 4609,6596,9386,13284,18705,26211,36561,50776,70226,96742,132765,
%U A126348 181540,247369,335940,454756,613689,825698,1107755,1482038,1977465,2631664
%N A126348 Limit of reversed rows of triangle A126347, in which row sums equal Bell numbers (A000110).
%C A126348 In triangle A126347, row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n).
%C A126348 Row sums of A253830. a(n) equals the number of colored compositions of n, as defined in A253830,  whose associated color partition has distinct parts. An example is given below. - _Peter Bala_, Jan 20 2015
%H A126348 Vaclav Kotesovec, <a href="/A126348/b126348.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..500 from Seiichi Manyama)
%F A126348 1 + Sum_{k>0} x^(k * (k + 1) / 2) / ((1 - x)^k * (1 - x) * (1 - x^2) ... (1 - x^k)). - _Michael Somos_, Aug 17 2008
%F A126348 G.f.: Product_{k>0} (1+x^k/(1-x)). - _Vladeta Jovovic_, Oct 05 2008
%F A126348 G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1)/(d*(1 - x)^d)). - _Ilya Gutkovskiy_, Apr 19 2019
%e A126348 a(5) = 12: The colored compositions (defined in A253830) of 5 whose color partitions have distinct parts are
%e A126348 5(c1), 5(c2), 5(c3), 5(c4), 5(c5),
%e A126348 1(c1) + 4(c2), 1(c1) + 4(c3), 1(c1) + 4(c4),
%e A126348 3(c1) + 2(c2),
%e A126348 2(c1) + 3(c2), 2(c1) + 3(c3), 2(c2) + 3(c3). - _Peter Bala_, Jan 20 2015
%t A126348 nmax = 50; CoefficientList[Series[Product[(1 - x + x^k)/(1 - x), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 16 2019 *)
%o A126348 (PARI) {B(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*B(k,q)*q^k))}
%o A126348 {a(n)=Vec(B(n+1,'q)+O('q^(n*(n-1)/2+1)))[n*(n-1)/2+1]}
%o A126348 (PARI) {a(n) = local(t); if( n<0, 0, t = 1; polcoeff( sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = t * x^k / (1 - x) / (1 - x^k) + x * O(x^n), 1), n))} /* _Michael Somos_, Aug 17 2008 */
%Y A126348 Cf. A126347, A126349; factorial variant: A126471. A253830, A307599, A307601, A307602.
%K A126348 nonn
%O A126348 0,3
%A A126348 _Paul D. Hanna_, Dec 31 2006