A126362 Number of base 8 n-digit numbers with adjacent digits differing by one or less.
1, 8, 22, 62, 176, 502, 1436, 4116, 11814, 33942, 97582, 280676, 807574, 2324116, 6689624, 19257202, 55439298, 159611886, 459545688, 1323132230, 3809653732, 10969153364, 31583803574, 90940708414, 261850874726, 753964626300
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..2174
- Jim Bumgardner, Variations of the Componium, 2013.
Programs
-
Maple
f:= gfun:-rectoproc({a(n)=5*a(n-1)-6*a(n-2)-a(n-3)+2*a(n-4),a(0)=1,a(1)=8,a(2)=22,a(3)=62,a(4)=176},a(n),remember): map(f, [$0..30]); # Robert Israel, Aug 12 2019
Formula
From Colin Barker, Nov 26 2012: (Start)
Conjecture: a(n) = 5*a(n-1) - 6*a(n-2) - a(n-3) + 2*a(n-4) for n > 4.
G.f.: -(4*x^4 + x^3 - 12*x^2 + 3*x + 1)/((2*x - 1)*(x^3 - 3*x + 1)). (End)
From Robert Israel, Aug 12 2019: (Start)
a(n) = e^T A^(n-1) e for n>=1, where A is the 8 X 8 matrix with 1 on the main diagonal and first super- and subdiagonals, 0 elsewhere, and e the column vector (1,1,1,1,1,1,1,1). Barker's conjecture follows from the fact that (A^4 - 5*A^3 + 6*A^2 + A - 2*I)*e = 0. (End)
Comments