A126389 Numerators in a series for the "alternating Euler constant" log(4/Pi).
1, -1, 2, -2, -1, 1, 1, -1, 1, -1, 3, -3, -2, 2, 2, -2, 2, -2, 2, -2, 4, -4, -3, 3, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 3, -3, -1, 1, 1, -1, 1, -1, 3, -3, 1, -1, 3, -3, 3, -3, 5, -5, -4, 4, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 4, -4, -2, 2
Offset: 2
Examples
floor(15/2) = 7 = 111 base 2, which has (# of 1's) - (# of 0's) = 3, so (-1)^15*3 = -3 is a term.
Links
- J. Sondow, Double integrals for Euler's constant and ln(4/Pi) and an analog of Hadjicostas's formula, Amer. Math. Monthly 112 (2005) 61-65.
- J. Sondow, New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi), Additive Number Theory, Festschrift In Honor of the Sixtieth Birthday of Melvyn B. Nathanson (D. Chudnovsky and G. Chudnovsky, eds.), Springer, 2010, pp. 331-340.
- Eric Weisstein's MathWorld, Digit Count
Programs
-
Mathematica
b[n_] := DigitCount[n,2,1] - DigitCount[n,2,0]; L = {}; Do[If[b[Floor[n/2]] != 0, L = Append[L,(-1)^n*b[Floor[n/2]]]], {n,2,100}]; L
Formula
Log(4/Pi) = 1/2 - 1/3 + 2/6 - 2/7 - 1/8 + 1/9 + 1/10 - 1/11 + 1/12 - 1/13 + 3/14 - 3/15 - 2/16 + 2/17 + 2/22 - ...
Comments