A126433 Class+ number of prime(n) according to the Erdős-Selfridge classification of primes.
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 3, 1, 2, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 1, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 1, 3, 3, 3, 3, 2, 3, 1, 2, 2, 4, 2, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3
Offset: 1
Keywords
Links
Crossrefs
Cf. A101253.
Programs
-
Maple
A126433 := proc(n) option remember; local p, pf, e, a; if isprime(n) then pf := ifactors(n+1)[2]; a := 1; for e from 1 to nops(pf) do p := op(1, op(e, pf)); if p > 3 then a := max(a, procname(p)+1); end if; end do; a ; else -1; end if; end proc: seq(A126433(ithprime(n)),n=1..100) ; A126433 := n -> if n>0 then A126433(-ithprime(n)) else numtheory[factorset](1-n); if % subset{2,3} then 1 else 1+max(seq(A126433(-i),i=%)) fi fi; map(%,[$1..999]); # M. F. Hasler, Apr 02 2007
-
Mathematica
classPlus[p_] := classPlus[p] = If[f = FactorInteger[p + 1][[All, 1]]; q = Last[f]; q == 2 || q == 3, 1, Max[classPlus /@ f] + 1]; classPlus /@ Prime /@ Range[105] (* Jean-François Alcover, Jun 24 2013 *)
-
PARI
A126433(n) = { if( n>0, n=-prime(n)); n=factor(1-n)[,1]; if( n[ #n]>3, vecsort( vector( #n, i, A126433(-n[i]) ))[ #n]+1, 1) }; vector(999,i,A126433(i))
Comments