cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126462 Column 2 of triangle A126460; equals the number of subpartitions of the partition {(k^2 + 9*k + 20)*k/6, k>=0}.

This page as a plain text file.
%I A126462 #3 Mar 30 2012 18:37:02
%S A126462 1,1,6,75,1565,48950,2145626,125727238,9507150815,902519025315,
%T A126462 105203477607220,14786330708536422,2467862211341410635,
%U A126462 482812610434512386665,109492763990117261581870
%N A126462 Column 2 of triangle A126460; equals the number of subpartitions of the partition {(k^2 + 9*k + 20)*k/6, k>=0}.
%F A126462 G.f.: 1/(1-x) = Sum_{k>=0} a(k)*x^k*(1-x)^[(k^2 + 9*k + 20)*k/6].
%e A126462 Equals the number of subpartitions of the partition:
%e A126462 {(k^2 + 9*k + 20)*k/6, k>=0} = [0,5,14,28,48,75,110,154,208,273,...]
%e A126462 as illustrated by g.f.:
%e A126462 1/(1-x) = 1*(1-x)^0 + 1*x*(1-x)^5 + 6*x^2*(1-x)^14 + 75*x^3*(1-x)^28 + 1565*x^4*(1-x)^48 + 48950*x^5*(1-x)^75 + 2145626*x^6*(1-x)^110 + 125727238*x^7*(1-x)^154 ...
%o A126462 (PARI) {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k*(1-x+x*O(x^n))^(1+(k^2+9*k+20)*k/6)), n)}
%Y A126462 Cf. A126460; A126461, A126463, A126464.
%K A126462 nonn
%O A126462 0,3
%A A126462 _Paul D. Hanna_, Dec 27 2006