cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201042 T(n,k)=Number of -k..k arrays of n elements with adjacent element differences also in -k..k.

Original entry on oeis.org

3, 5, 7, 7, 19, 17, 9, 37, 75, 41, 11, 61, 203, 295, 99, 13, 91, 429, 1111, 1161, 239, 15, 127, 781, 3011, 6083, 4569, 577, 17, 169, 1287, 6691, 21141, 33305, 17981, 1393, 19, 217, 1975, 13021, 57343, 148433, 182349, 70763, 3363, 21, 271, 2873, 23045, 131781
Offset: 1

Views

Author

R. H. Hardin Nov 26 2011

Keywords

Comments

Table starts
....3.......5........7.........9.........11..........13..........15
....7......19.......37........61.........91.........127.........169
...17......75......203.......429........781........1287........1975
...41.....295.....1111......3011.......6691.......13021.......23045
...99....1161.....6083.....21141......57343......131781......268983
..239....4569....33305....148433.....491429.....1333683.....3139529
..577...17981...182349...1042167....4211559....13497523....36644243
.1393...70763...998383...7317185...36093157...136601483...427707523
.3363..278483..5466269..51374875..309319197..1382473365..4992154799
.8119.1095951.29928491.360709449.2650872719.13991301963.58267877227

Examples

			Some solutions for n=4 k=7
.-5...-1....2....2...-3....4...-4....4....5....2...-6...-1....1....4....2....0
.-3....0....3....1....2....4...-3....4....2...-5....1....6....5....7....4....0
.-5...-5...-4...-3....2...-2....1....5....7...-7....0....2....4....1....1....2
.-7...-1....2...-6....1...-1...-5....7....0...-1...-5....6...-3....5...-1....2
		

Crossrefs

Column 1 is A001333(n+1)
Column 2 is A126392
Column 3 is A126475
Column 4 is A126504
Column 5 is A126532
Row 1 is A004273(n+1)
Row 2 is A003215
Row 3 is A063494(n+1)

Formula

Empirical for columns:
k=1: a(n) = 2*a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -a(n-3)
k=3: a(n) = 5*a(n-1) +3*a(n-2) -2*a(n-3) -a(n-4)
k=4: a(n) = 7*a(n-1) +a(n-2) -6*a(n-3) +a(n-5)
k=5: a(n) = 8*a(n-1) +6*a(n-2) -9*a(n-3) -5*a(n-4) +2*a(n-5) +a(n-6)
k=6: a(n) = 10*a(n-1) +3*a(n-2) -18*a(n-3) -a(n-4) +8*a(n-5) -a(n-7)
k=7: a(n) = 11*a(n-1) +10*a(n-2) -24*a(n-3) -15*a(n-4) +13*a(n-5) +7*a(n-6) -2*a(n-7) -a(n-8)
Empirical for rows:
n=1: a(k) = 2*k + 1
n=2: a(k) = 3*k^2 + 3*k + 1
n=3: a(k) = (14/3)*k^3 + 7*k^2 + (13/3)*k + 1
n=4: a(k) = (29/4)*k^4 + (29/2)*k^3 + (51/4)*k^2 + (11/2)*k + 1
n=5: a(k) = (169/15)*k^5 + (169/6)*k^4 + 32*k^3 + (119/6)*k^2 + (101/15)*k + 1
n=6: a(k) = (2101/120)*k^6 + (2101/40)*k^5 + (1753/24)*k^4 + (1405/24)*k^3 + (569/20)*k^2 + (119/15)*k + 1
n=7: a(k) = (17141/630)*k^7 + (17141/180)*k^6 + (28177/180)*k^5 + (2759/18)*k^4 + (17299/180)*k^3 + (6929/180)*k^2 + (1921/210)*k + 1

A126530 Number of base 9 n-digit numbers with adjacent digits differing by five or less.

Original entry on oeis.org

1, 9, 69, 541, 4231, 33101, 258953, 2025831, 15848391, 123984439, 969949627, 7588067405, 59362636295, 464403174075, 3633098554089, 28422297349753, 222352070721709, 1739494972761653, 13608340819322255, 106460175369651261
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+11^(n-1) for base>=5n-4; a(base,n)=a(base-1,n)+11^(n-1)-2 when base=5n-5.

Crossrefs

Cf. Base 9 differing by four or less A126504, three or less A126477, two or less A126396, one or less A126363.

Formula

Conjectures from Colin Barker, Jun 01 2017: (Start)
G.f.: (1 + 2*x - x^2 - x^3) / ((1 + x)*(1 - 8*x + x^2 + 3*x^3)).
a(n) = 7*a(n-1) + 7*a(n-2) - 4*a(n-3) - 3*a(n-4) for n>3.
(End)
Showing 1-2 of 2 results.