cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A201042 T(n,k)=Number of -k..k arrays of n elements with adjacent element differences also in -k..k.

Original entry on oeis.org

3, 5, 7, 7, 19, 17, 9, 37, 75, 41, 11, 61, 203, 295, 99, 13, 91, 429, 1111, 1161, 239, 15, 127, 781, 3011, 6083, 4569, 577, 17, 169, 1287, 6691, 21141, 33305, 17981, 1393, 19, 217, 1975, 13021, 57343, 148433, 182349, 70763, 3363, 21, 271, 2873, 23045, 131781
Offset: 1

Views

Author

R. H. Hardin Nov 26 2011

Keywords

Comments

Table starts
....3.......5........7.........9.........11..........13..........15
....7......19.......37........61.........91.........127.........169
...17......75......203.......429........781........1287........1975
...41.....295.....1111......3011.......6691.......13021.......23045
...99....1161.....6083.....21141......57343......131781......268983
..239....4569....33305....148433.....491429.....1333683.....3139529
..577...17981...182349...1042167....4211559....13497523....36644243
.1393...70763...998383...7317185...36093157...136601483...427707523
.3363..278483..5466269..51374875..309319197..1382473365..4992154799
.8119.1095951.29928491.360709449.2650872719.13991301963.58267877227

Examples

			Some solutions for n=4 k=7
.-5...-1....2....2...-3....4...-4....4....5....2...-6...-1....1....4....2....0
.-3....0....3....1....2....4...-3....4....2...-5....1....6....5....7....4....0
.-5...-5...-4...-3....2...-2....1....5....7...-7....0....2....4....1....1....2
.-7...-1....2...-6....1...-1...-5....7....0...-1...-5....6...-3....5...-1....2
		

Crossrefs

Column 1 is A001333(n+1)
Column 2 is A126392
Column 3 is A126475
Column 4 is A126504
Column 5 is A126532
Row 1 is A004273(n+1)
Row 2 is A003215
Row 3 is A063494(n+1)

Formula

Empirical for columns:
k=1: a(n) = 2*a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -a(n-3)
k=3: a(n) = 5*a(n-1) +3*a(n-2) -2*a(n-3) -a(n-4)
k=4: a(n) = 7*a(n-1) +a(n-2) -6*a(n-3) +a(n-5)
k=5: a(n) = 8*a(n-1) +6*a(n-2) -9*a(n-3) -5*a(n-4) +2*a(n-5) +a(n-6)
k=6: a(n) = 10*a(n-1) +3*a(n-2) -18*a(n-3) -a(n-4) +8*a(n-5) -a(n-7)
k=7: a(n) = 11*a(n-1) +10*a(n-2) -24*a(n-3) -15*a(n-4) +13*a(n-5) +7*a(n-6) -2*a(n-7) -a(n-8)
Empirical for rows:
n=1: a(k) = 2*k + 1
n=2: a(k) = 3*k^2 + 3*k + 1
n=3: a(k) = (14/3)*k^3 + 7*k^2 + (13/3)*k + 1
n=4: a(k) = (29/4)*k^4 + (29/2)*k^3 + (51/4)*k^2 + (11/2)*k + 1
n=5: a(k) = (169/15)*k^5 + (169/6)*k^4 + 32*k^3 + (119/6)*k^2 + (101/15)*k + 1
n=6: a(k) = (2101/120)*k^6 + (2101/40)*k^5 + (1753/24)*k^4 + (1405/24)*k^3 + (569/20)*k^2 + (119/15)*k + 1
n=7: a(k) = (17141/630)*k^7 + (17141/180)*k^6 + (28177/180)*k^5 + (2759/18)*k^4 + (17299/180)*k^3 + (6929/180)*k^2 + (1921/210)*k + 1
Showing 1-1 of 1 results.