This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126562 #54 Jun 20 2024 16:58:15 %S A126562 0,7,32,81,160,275,432,637,896,1215,1600,2057,2592,3211,3920,4725, %T A126562 5632,6647,7776,9025,10400,11907,13552,15341,17280,19375,21632,24057, %U A126562 26656,29435,32400,35557,38912,42471,46240,50225,54432,58867,63536,68445 %N A126562 Number of intersections of at least four edges in a cube of n X n X n smaller cubes. %C A126562 a(n-1) is the number of points in a cubic lattice of n^3 equally spaced points from which all the 12*n-16 points on the 12 edges are removed. - _Luciano Ancora_, Jun 25 2015 %H A126562 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A126562 a(n) = 6*(n-1)^2 + (n-1)^3. %F A126562 G.f.: x^2*(7+4*x-5*x^2)/(1-x)^4. - _Colin Barker_, Jul 29 2012 %F A126562 a(n-1) = n^3 - (12*n-16). - _Luciano Ancora_, Jun 25 2015 %e A126562 On a cube made of 3 X 3 X 3 smaller cubes, each of the 6 sides has 4 intersections of four edges and in the center, there are 8 intersections of six edges. 6 * 4 + 8 = 32, which is a(3). %t A126562 LinearRecurrence[{4, -6, 4, -1}, {0, 7, 32, 81}, 50] (* _Vincenzo Librandi_, Jun 27 2015 *) %o A126562 (PARI) concat(0, Vec(x^2*(7+4*x-5*x^2)/(1-x)^4 + O(x^50))) \\ _Michel Marcus_, Jun 26 2015 %o A126562 (Magma) [6*(n-1)^2 + (n-1)^3: n in [1..40]]; // _Vincenzo Librandi_, Jun 27 2015 %o A126562 (Python) def a(n): return (n**3+3*n**2-9*n+5) # _Torlach Rush_, May 01 2024 %Y A126562 Cf. A017617. %K A126562 nonn,easy %O A126562 1,2 %A A126562 Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 12 2007