This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126567 #27 Jan 30 2023 07:39:37 %S A126567 1,2,5,14,42,132,430,1444,4981,17594,63441,232806,866870,3266460, %T A126567 12426210,47629020,183638729,711285170,2764753405,10775740030, %U A126567 42086252770,164635420788,644811687734,2527808259668,9916569410301,38923511495402,152841133694345,600349070362454 %N A126567 Sequence generated from the E6 Cartan matrix. %H A126567 Wikipedia, <a href="https://en.wikipedia.org/wiki/E6_%28mathematics%29">E6 (mathematics)</a> %H A126567 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (12,-55,120,-125,52,-3). %F A126567 Let M = [2,-1,0,0,0,0; -1,2,-1,0,0,0; 0,-1,2,-1,0,-1; 0,0,-1,2,-1,0; 0,0,0,-1,2,0; 0,0,-1,0,0,2] then a(n) is the upper left term in M^n. %F A126567 G.f.: -(2*x-1)*(2*x^4-16*x^3+20*x^2-8*x+1) / ((x-1)*(3*x-1)*(x^4-16*x^3+20*x^2-8*x+1)). - _Colin Barker_, May 25 2013 %F A126567 a(n) ~ c*(2 + sqrt(2 + sqrt(3)))^n, where c = (3 - sqrt(3))/24. - _Stefano Spezia_, Jan 29 2023 %F A126567 a(n) = (3^n + 1)/4 + ((3 + sqrt(3))*((2 - sqrt(2 - sqrt(3)))^n + (2 + sqrt(2 - sqrt(3)))^n) + (3 - sqrt(3))*((2 - sqrt(2 + sqrt(3)))^n + (2 + sqrt(2 + sqrt(3)))^n))/24. - _Vaclav Kotesovec_, Jan 30 2023 %t A126567 f[n_] := (MatrixPower[{{2, -1, 0, 0, 0, 0}, {-1, 2, -1, 0, 0, 0}, {0, -1, 2, -1, 0, -1}, {0, 0, -1, 2, -1, 0}, {0, 0, 0, -1, 2, 0}, {0, 0, -1, 0, 0, 2}}, n].{1, 0, 0, 0, 0, 0})[[1]]; Table[ f@n, {n, 0, 25}] (* _Robert G. Wilson v_, Aug 07 2007 *) %o A126567 (PARI) a(n) = ([2,-1,0,0,0,0; -1,2,-1,0,0,0; 0,-1,2,-1,0,-1; 0,0,-1,2,-1,0; 0,0,0,-1,2,0; 0,0,-1,0,0,2]^n)[1,1]; \\ _Michel Marcus_, Jan 30 2023 %Y A126567 Cf. A126566, A126568, A126569. %K A126567 nonn,easy %O A126567 0,2 %A A126567 _Gary W. Adamson_, Dec 28 2006 %E A126567 More terms from _Robert G. Wilson v_, Aug 07 2007