A126569 Top-left "head" entry of the n-th power of the E8 Cartan matrix.
1, 2, 5, 14, 42, 132, 430, 1444, 4981, 17594, 63442, 232828, 867146, 3269060, 12446684, 47771496, 184544427, 716658870, 2794956099, 10938266562, 42930256917, 168890693650, 665739119129, 2628578437646, 10393091551794, 41141896235012, 163028816478833
Offset: 0
Keywords
Examples
a(6) = 430 = leftmost term in M^6 * [1,0,0,0,0,0,0,0].
Links
- Wikipedia, E8
- Index entries for linear recurrences with constant coefficients, signature (16,-105,364,-714,784,-440,96,-1).
Programs
-
Maple
E8 := matrix(8,8,[ [2, -1, 0, 0, 0, 0, 0, 0 ], [ -1, 2, -1, 0, 0, 0, 0, 0 ], [ 0, -1, 2, -1, 0, 0, 0, -1 ], [ 0, 0, -1, 2, -1, 0, 0, 0 ], [ 0, 0, 0, -1, 2, -1, 0, 0 ], [ 0, 0, 0, 0, -1, 2, -1, 0 ], [ 0, 0, 0, 0, 0, -1, 2, 0 ], [ 0, 0, -1, 0, 0, 0, 0, 2 ] ]) ; printf("1,") ; for n from 1 to 20 do T := evalm(E8^n) ; printf("%a,", T[1,1]) ; od: # R. J. Mathar, May 08 2009
Formula
a(n) = leftmost term in M^n * [1,0,0,0,0,0,0,0], where M = the 8x8 matrix [2,-1,0,0,0,0,0,0; -1,2,-1,0,0,0,0,0; 0,-1,2,-1,0,0,0,-1; 0,0,-1,2,-1,0,0,0; 0,0,0,-1,2,-1,0,0; 0,0,0,0,-1,2,-1,0; 0,0,0,0,0,-1,2,0; 0,0,-1,0,0,0,0,2].
a(n) = 16*a(n-1)-105*a(n-2)+364*a(n-3)-714*a(n-4)+784*a(n-5)-440*a(n-6)+96*a(n-7) -a(n-8). - R. J. Mathar, May 08 2009 [Corrected by Georg Fischer, Mar 12 2020]
G.f.: -(2*x-1)*(2*x^2-4*x+1)*(x^4-16*x^3+20*x^2-8*x+1) / (1-16*x +105*x^2 -364*x^3+714*x^4-784*x^5+440*x^6-96*x^7+x^8). - R. J. Mathar, May 08 2009
Extensions
Edited by R. J. Mathar, May 08 2009