cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126587 a(n) is the number of integer lattice points inside the right triangle with legs 3n and 4n (and hypotenuse 5n).

This page as a plain text file.
%I A126587 #51 Apr 18 2024 17:56:50
%S A126587 3,17,43,81,131,193,267,353,451,561,683,817,963,1121,1291,1473,1667,
%T A126587 1873,2091,2321,2563,2817,3083,3361,3651,3953,4267,4593,4931,5281,
%U A126587 5643,6017,6403,6801,7211,7633,8067,8513,8971,9441,9923,10417,10923,11441
%N A126587 a(n) is the number of integer lattice points inside the right triangle with legs 3n and 4n (and hypotenuse 5n).
%C A126587 Row sums of triangle A193832. - _Omar E. Pol_, Aug 22 2011
%H A126587 Vincenzo Librandi, <a href="/A126587/b126587.txt">Table of n, a(n) for n = 1..10000</a>
%H A126587 Zak Seidov <a href="http://web.archive.org/web/20091026222954/http://geocities.com/zseidov/InsidePoints.html">Inside points</a>
%H A126587 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A126587 a(n) = A186424(2*n-1).
%F A126587 By Pick's theorem, a(n) = 6*n^2 - 4*n + 1. - _Nick Hobson_, Mar 13 2007
%F A126587 O.g.f.: x*(3+8*x+x^2)/(1-x)^3 = -1 - 12/(-1+x)^3 - 11/(-1+x) - 22/(-1+x)^2. - _R. J. Mathar_, Dec 10 2007
%F A126587 E.g.f.: exp(x)*(1 + 2*x + 6*x^2) - 1. - _Stefano Spezia_, May 09 2021
%F A126587 a(n) = (A000326(2n-1) + A000326(2n))/2. - _Charlie Marion_, Apr 17 2024
%e A126587 At n=1, three lattice points (1,1), (1,2) and (2,1) are inside the triangle with vertices at the points (0,0), (3n,0) and (0,4n); hence a(1)=3.
%t A126587 nip[a_,b_]:=Sum[Floor[b-b*i/a-10^-6],{i,a-1}] Table[nip[3k,4k],{k,100}]
%t A126587 Table[6*n^2-4*n+1, {n,1,50}] (* _G. C. Greubel_, Mar 06 2018 *)
%o A126587 (Magma) [6*n^2 - 4*n + 1: n in [1..50] ]; // _Vincenzo Librandi_, May 23 2011
%o A126587 (PARI) a(n)=6*n^2-4*n+1 \\ _Charles R Greathouse IV_, Jun 17 2017
%Y A126587 Cf. A000326, A186424, A193832.
%K A126587 nonn,easy
%O A126587 1,1
%A A126587 _Zak Seidov_, Jan 05 2007