cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126616 a(n) = n for n < 10, a(10*n) = a(n), and if the terms a(10), a(20), a(30), ... are deleted, one gets back the original sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, 2, 5, 1, 3, 4, 2, 5, 1, 3, 4, 2, 6, 5, 1, 3, 4, 2, 6, 5, 1, 3, 7, 4, 2, 6, 5, 1, 3, 7, 4, 2, 8, 6, 5, 1, 3, 7, 4, 2, 8, 6, 9, 5, 1, 3, 7, 4, 2, 8, 6, 9, 1, 5, 1, 3, 7, 4
Offset: 1

Views

Author

N. J. A. Sloane, Feb 09 2007

Keywords

Comments

A self-generating sequence.
Invented by Eric Angelini. Might also be called a lizard sequence (une suite du lézard) because it grows back from its tail.

References

  • J.-P. Delahaye, La suite du lézard et autres inventions, Pour la Science, No. 353, 2007.

Crossrefs

Programs

  • Maple
    A126616 := proc(n) option remember ; if n < 10 then n ; elif n mod 10 = 0 then A126616(n/10) ; else A126616( n-floor(n/10) ) ; fi ; end: seq(A126616(n),n=1..120) ; # R. J. Mathar, Oct 02 2007
  • Mathematica
    a[n_] := Module[{m = 10, k = n, q}, While[k >= m, q = Quotient[k, m]; If[Mod[k, m] != 0, k -= q, k = q]]; k];
    Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 02 2022, after M. F. Hasler *)
  • PARI
    a(n,m=10)=while(n>=m,if(n%m,n-=n\m,n\=m));n \\ M. F. Hasler, Mar 07 2015

Extensions

More terms from R. J. Mathar, Oct 02 2007
Definition rephrased by M. F. Hasler, Mar 09 2015