cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126792 Removing the first, fourth, seventh, tenth ... term of the sequence yields the original sequence, augmented by 1.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 4, 3, 1, 3, 5, 3, 4, 2, 2, 4, 6, 2, 4, 5, 4, 3, 3, 3, 5, 7, 1, 3, 5, 3, 6, 5, 5, 4, 4, 3, 4, 6, 4, 8, 2, 2, 4, 6, 2, 4, 7, 4, 6, 6, 6, 5, 5, 2, 4, 5, 4, 7, 5, 5, 9, 3, 4, 3, 5, 3, 7, 3, 3, 5, 8, 3, 5, 7, 5, 7, 7, 7, 6, 6, 1, 3, 5, 3, 6, 5, 5, 8, 6, 3, 6, 10, 6, 4, 5, 5, 4, 6, 5, 4, 8, 4, 4, 4
Offset: 0

Views

Author

Roland Bacher, Feb 20 2007, Feb 26 2007

Keywords

Comments

Inspired by the "decimation-like sequences" (or "suites du lezard", after Delahaye) of Eric Angelini.
This sequence is a generalization of sequence A000120, which is defined recursively by a(0)=0, a(2n)=a(n) and a(2n+1)=1+a(n). Its subsequence of even term is thus the original sequence while its subsequence of odd terms yields the original sequence augmented by 1.

Examples

			Removing parenthesised terms
(0),1,2,(1),3,2,(2),4,3,(1),3,5,(3),4,..
leaves
1,2, 3,2, 4,3, 3,5, 4,..
which is the original sequence with 1 added to each term.
		

References

  • Article by J-P. Delahaye in Pour la Science, mars 2007.

Crossrefs

Cf. A117943.

Programs

  • Maple
    liz:=n->if n=0 then 0 elif modp(n,3)=0 then liz(n/3) else 1+liz(n-1-floor(n/3)) fi;
  • Mathematica
    a[0] = 0; a[n_] := a[n] = If[Mod[n, 3] == 0, a[n/3], a[Floor[(2*n - 1)/3]] + 1]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Sep 27 2013 *)