cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126795 a(n) = gcd(n, Product_{p|n} (p+1)), where the product is over the distinct primes p that divide n.

This page as a plain text file.
%I A126795 #19 Apr 24 2019 19:45:56
%S A126795 1,1,1,1,1,6,1,1,1,2,1,12,1,2,3,1,1,6,1,2,1,2,1,12,1,2,1,4,1,6,1,1,3,
%T A126795 2,1,12,1,2,1,2,1,6,1,4,3,2,1,12,1,2,3,2,1,6,1,8,1,2,1,12,1,2,1,1,1,6,
%U A126795 1,2,3,2,1,12,1,2,3,4,1,6,1,2,1,2,1,12,1,2,3,4,1,18,7,4,1,2,5,12,1,2,3,2,1
%N A126795 a(n) = gcd(n, Product_{p|n} (p+1)), where the product is over the distinct primes p that divide n.
%C A126795 First occurrence of k: 1, 10, 15, 28, 95, 6, 91, 56, 153, 190, 473, 12, 1339, 182, 285, 496, 1139, 90, 703, 380, ..., . - _Robert G. Wilson v_
%H A126795 Antti Karttunen, <a href="/A126795/b126795.txt">Table of n, a(n) for n = 1..65537</a>
%F A126795 a(n) = gcd(n, A048250(n)).
%F A126795 a(n) = gcd(n, A325313(n)) = gcd(n, A048250(n)-n). - _Antti Karttunen_, Apr 24 2019
%e A126795 The distinct primes that divide 28 are 2 and 7. So a(28) = GCD(28, (2+1)(7+1)) = GCD(28, 24) = 4.
%p A126795 with(numtheory): a:=proc(n) local fs: fs:=factorset(n): gcd(n,product(1+fs[i],i=1..nops(fs))) end: seq(a(n),n=1..120); # _Emeric Deutsch_, Mar 27 2007
%t A126795 f[n_] := GCD[n, Times @@ (First /@ FactorInteger[n] + 1)]; Array[f, 101] (* _Robert G. Wilson v_ *)
%o A126795 (PARI) A126795(n) = gcd(n,factorback(apply(p -> p+1,factor(n)[,1]))); \\ _Antti Karttunen_, Sep 10 2018
%Y A126795 Cf. A048250, A325313, A325385.
%K A126795 nonn
%O A126795 1,6
%A A126795 _Leroy Quet_, Mar 14 2007
%E A126795 More terms from _Emeric Deutsch_, Mar 27 2007