A126801 a(n) = smallest integer which is coprime to n and is > A057237(n).
2, 3, 4, 3, 6, 5, 8, 3, 4, 3, 12, 5, 14, 3, 4, 3, 18, 5, 20, 3, 4, 3, 24, 5, 6, 3, 4, 3, 30, 7, 32, 3, 4, 3, 6, 5, 38, 3, 4, 3, 42, 5, 44, 3, 4, 3, 48, 5, 8, 3, 4, 3, 54, 5, 6, 3, 4, 3, 60, 7, 62, 3, 4, 3, 6, 5, 68, 3, 4, 3, 72, 5, 74, 3, 4, 3, 8, 5, 80, 3
Offset: 1
Keywords
Examples
The integers which are coprime to 9 are 1,2,4,5,7,8,10,11,13,14,... Now 1 and 2, but not 3, are coprime to 9, so A057237(9) = 2. The smallest integer > 2 and coprime to 9 is 4. So a(9) = 4.
Crossrefs
Cf. A057237.
Programs
-
Maple
A020639 := proc(n) if n = 1 then 1 ; else min(op(numtheory[divisors](n) minus {1})) ; fi ; end: A057237 := proc(n) if n = 1 then 1 ; else A020639(n)-1 ; fi: end: A126801 := proc(n) local a; for a from A057237(n)+1 do if gcd(n,a) = 1 then RETURN(a) ; fi ; od: end: seq(A126801(n),n=1..80) ; # R. J. Mathar, Nov 01 2007
Extensions
More terms from R. J. Mathar, Nov 01 2007
Comments