A126805 "Class-" (or "class-minus") number of prime(n) according to the Erdős-Selfridge classification of primes.
1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 2, 4, 2, 3, 2, 3, 2, 1, 2, 3, 3, 1, 2, 2, 3, 1, 2, 2, 2, 2, 4, 2, 2, 2, 1, 4, 3, 4, 2, 2, 1, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 1, 3, 4, 2, 4, 2, 5, 2, 2, 3, 2, 3, 3, 2, 4, 3, 3, 5, 3, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 1, 2, 2, 2, 2, 4, 3, 4, 3, 1, 2, 4, 3, 3, 2, 3, 2, 2, 5, 3, 3, 2
Offset: 1
Links
Crossrefs
Cf. A056637.
Programs
-
Maple
A126805 := proc(n) option remember; local p, pe, a; if isprime(n) then a := 1; for pe in ifactors(n-1)[2] do p := op(1, pe); if p > 3 then a := max(a, procname(p)+1); end if; end do; a ; else -1; end if; end proc: seq(A126805(ithprime(n)),n=1..100) ;
-
Mathematica
a [n_] := a[n] = Module[{p, pf, e, res}, If[PrimeQ[n], pf = FactorInteger[n-1]; res = 1; For[e = 1, e <= Length[pf], e++, p = pf[[e, 1]]; If[p > 3, res = Max[res, a[p]+1]]]; Return[res], -1]]; Table[a[Prime[n]], {n, 1, 105}] (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
-
PARI
A126805(n) = { if( n>0, n=-prime(n)); if(( n=factor(-1-n)[,1] ) & n[ #n]>3, vecsort( vector( #n, i, A126805(-n[i]) ))[ #n]+1, 1) } \\ M. F. Hasler, Apr 16 2007
Formula
a(n) = max { a(p)+1 ; prime(p) is > 3 and divides prime(n)-1 } union { 1 } - M. F. Hasler, Apr 16 2007
Comments