This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126818 #9 Jan 05 2025 01:06:06 %S A126818 1,232,252,64,222,96,152,0,21,48,84,0,54,192,136,0,178,8,44,128,160, %T A126818 32,72,0,167,240,152,0,102,64,96,0,176,80,208,64,62,224,40,0,122,0, %U A126818 180,0,54,64,16,0,169,88,56,128,110,192,216,0,80,112,228,0,198,0,120,0,212,128,188 %N A126818 Ramanujan numbers (A000594) read mod 256. %H A126818 Amiram Eldar, <a href="/A126818/b126818.txt">Table of n, a(n) for n = 1..10000</a> %H A126818 George E. Andrews and Bruce C. Berndt, <a href="https://doi.org/10.1007/978-1-4614-3810-6_5">Ramanujan's Unpublished Manuscript on the Partition and Tau Functions</a>, in: Ramanujan's Lost Notebook, Part III, Springer, New York, NY, 2012. %H A126818 R. P. Bambah and S. Chowla, <a href="https://doi.org/10.1112/jlms/s1-22.2.140">The Residue of Ramanujan's Function tau(n) to the Modulus 2^8</a>, Journal of the London Mathematical Society, Vol s1-22, No. 2 (1947), pp. 140-147. %H A126818 H. P. F. Swinnerton-Dyer, <a href="http://dx.doi.org/10.1007/978-3-540-37802-0_1">On l-adic representations and congruences for coefficients of modular forms</a>, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973. %F A126818 a(n) == sigma_11(n) (mod 256) for n odd (Bambah and Chowla, 1947; Andrews and Berndt, 2012, eq. (5.12.26), p. 118). - _Amiram Eldar_, Jan 05 2025 %t A126818 a[n_] := Mod[RamanujanTau[n], 256]; Array[a, 100] (* _Amiram Eldar_, Jan 05 2025 *) %o A126818 (PARI) a(n) = ramanujantau(n) % 256; \\ _Amiram Eldar_, Jan 05 2025 %Y A126818 Cf. A000594, A013959. %K A126818 nonn %O A126818 1,2 %A A126818 _N. J. A. Sloane_, Feb 25 2007