A126821 Ramanujan numbers (A000594) read mod 2048.
1, 2024, 252, 576, 734, 96, 1688, 512, 1045, 816, 84, 1792, 1846, 448, 648, 0, 1970, 1544, 1580, 896, 1440, 32, 328, 0, 423, 752, 408, 1536, 1126, 832, 1376, 0, 688, 1872, 2000, 1856, 1342, 992, 296, 1024, 890, 256, 1716, 1280, 1078, 320, 1808, 0, 1449, 88, 824, 384
Offset: 1
Keywords
References
- Oddmund Kolberg, Congruences for Ramanujan's Function ̈tau(n), Univ. Bergen Årbok Naturvit Rekke, No. 11, 1962.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- George E. Andrews and Bruce C. Berndt, Ramanujan's Unpublished Manuscript on the Partition and Tau Functions, in: Ramanujan's Lost Notebook, Part III, Springer, New York, NY, 2012.
- H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
Programs
-
Mathematica
a[n_] := Mod[RamanujanTau[n], 2048]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
-
PARI
a(n) = ramanujantau(n) % 2048; \\ Amiram Eldar, Jan 05 2025
Formula
From Amiram Eldar, Jan 05 2025: (Start)
a(n) == sigma_11(n) (mod 2048) for n == 1 (mod 8) (Kolberg, 1962).
a(n) == 24 * sigma_11(n) (mod 2048) (Andrews and Berndt, 2012, p. 118). (End)