This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126822 #11 Jan 05 2025 01:10:02 %S A126822 1,4072,252,2624,734,2144,3736,2560,1045,2864,2132,1792,3894,448,648, %T A126822 0,4018,3592,3628,896,3488,2080,2376,2048,2471,752,2456,1536,1126,832, %U A126822 3424,0,688,1872,2000,1856,1342,3040,2344,3072,2938,2304,3764,3328,1078,320 %N A126822 Ramanujan numbers (A000594) read mod 4096. %D A126822 Oddmund Kolberg, Congruences for Ramanujan's Function ̈tau(n), Univ. Bergen Årbok Naturvit Rekke, No. 11, 1962. %H A126822 Amiram Eldar, <a href="/A126822/b126822.txt">Table of n, a(n) for n = 1..10000</a> %H A126822 H. P. F. Swinnerton-Dyer, <a href="http://dx.doi.org/10.1007/978-3-540-37802-0_1">On l-adic representations and congruences for coefficients of modular forms</a>, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973. %F A126822 a(n) == 1537 * sigma_11(n) (mod 4096) for n == 5 (mod 8) (Kolberg, 1962). - _Amiram Eldar_, Jan 05 2025 %t A126822 a[n_] := Mod[RamanujanTau[n], 4096]; Array[a, 100] (* _Amiram Eldar_, Jan 05 2025 *) %o A126822 (PARI) a(n) = ramanujantau(n) % 4096; \\ _Amiram Eldar_, Jan 05 2025 %Y A126822 Cf. A000594, A013959. %K A126822 nonn %O A126822 1,2 %A A126822 _N. J. A. Sloane_, Feb 25 2007