cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126830 Ramanujan numbers (A000594) read mod 729.

Original entry on oeis.org

1, 705, 252, 715, 456, 513, 23, 645, 81, 720, 255, 117, 359, 177, 459, 70, 612, 243, 524, 177, 693, 441, 555, 702, 466, 132, 0, 407, 570, 648, 584, 495, 108, 621, 282, 324, 236, 546, 72, 333, 573, 135, 689, 75, 486, 531, 75, 144, 264, 480, 405, 77, 135, 0, 369, 255
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

References

  • M. H. Ashworth, Congruence and identical properties of modular forms, Diss. University of Oxford, 1968.
  • Oddmund Kolberg, Congruences for Ramanujan's Function ̈tau(n), Univ. Bergen Årbok Naturvit Rekke, No. 11, 1962.

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 729]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 729; \\ Amiram Eldar, Jan 05 2025

Formula

From Amiram Eldar, Jan 05 2025: (Start)
a(n) == 53 * sigma_11(n) (mod 729) for n == 2 (mod 3) (Kolberg, 1962).
a(n) == n^(-620) * sigma_1231(n) for n == 1 (mod 3) (Ashworth, 1968). (End)