This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A126934 #36 Sep 08 2022 08:45:29 %S A126934 1,-2,36,-1800,176400,-28576800,6915585600,-2337467932800, %T A126934 1051860569760000,-607975409321280000,438958245529964160000, %U A126934 -387161172557428389120000,409616520565759235688960000,-512020650707199044611200000000,746526108731096207043129600000000,-1255656914885703820246543987200000000 %N A126934 Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(0,2n). %C A126934 |a(n)| is the number of functions f:{1,2,...,2n}->{1,2,...,2n} such that each element has either 0 or 2 preimages. That is, |(f^-1)(x)| is in {0,2} for all x in {1,2,...,2n}. - _Geoffrey Critzer_, Feb 24 2012. %D A126934 V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007. %H A126934 G. C. Greubel, <a href="/A126934/b126934.txt">Table of n, a(n) for n = 0..150</a> %H A126934 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 131. %H A126934 S. Goodenough, C. Lavault, <a href="http://arxiv.org/abs/1404.1894">On subsets of Riordan subgroups and Heisenberg--Weyl algebra</a>, arXiv preprint arXiv:1404.1894 [cs.DM], 2014-2016. %H A126934 S. Goodenough, C. Lavault, <a href="https://doi.org/10.37236/5264">Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups</a>, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16. %F A126934 a(n) = (-1)^n * A001147(n) * A001813(n). - _N. J. A. Sloane_, Mar 21 2007 %F A126934 E.g.f. for positive values with interpolated zeros: %F A126934 (1-2*x^2)^(-1/2) which is exp(log(1/(1-x*G(x)))) where %F A126934 G(x) is the e.g.f. for A036770. - _Geoffrey Critzer_, Feb 24 2012 %F A126934 a(n) = (-8)^n * gamma(n + 1/2)^2 / Pi. - _Daniel Suteu_, Jan 06 2017 %p A126934 T:= proc(n, k) option remember; %p A126934 if k=0 then 1 %p A126934 elif k=1 then n %p A126934 else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) %p A126934 fi; end: %p A126934 seq(T(0, 2*k), n=0..15); # _G. C. Greubel_, Jan 28 2020 %t A126934 nn=40;b=(1-(1-2x^2)^(1/2))/x;Select[Range[0,nn]!CoefficientList[Series[1/(1-x b),{x,0,nn}],x],#>0&]*Table[(-1)^(n),{n,0,nn/2}] (* _Geoffrey Critzer_, Feb 24 2012 *) %t A126934 T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[0, 2*n], {n,0,15}] (* _G. C. Greubel_, Jan 28 2020 *) %o A126934 (PARI) T(n,k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) )); %o A126934 vector(15, n, T(0,2*(n-1)) ) \\ _G. C. Greubel_, Jan 28 2020 %o A126934 (Magma) %o A126934 function T(n,k) %o A126934 if k eq 0 then return 1; %o A126934 elif k eq 1 then return n; %o A126934 else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2); %o A126934 end if; return T; end function; %o A126934 [T(0,2*n): n in [0..15]]; // _G. C. Greubel_, Jan 28 2020 %o A126934 (Sage) %o A126934 @CachedFunction %o A126934 def T(n, k): %o A126934 if (k==0): return 1 %o A126934 elif (k==1): return n %o A126934 else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) %o A126934 [T(0, 2*n) for n in (0..15)] # _G. C. Greubel_, Jan 28 2020 %Y A126934 See A105937 for the full array. %Y A126934 See also A127080. %K A126934 sign %O A126934 0,2 %A A126934 Vincent v.d. Noort, Mar 21 2007