This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127005 #11 Feb 16 2025 08:33:04 %S A127005 2,3,8,43,51,94,239,333,572,2049,21062,44173,65235,239878,544991, %T A127005 13319662,13864653,54913621,123691895,425989306,549681201,975670507, %U A127005 1525351708,138257324227,278040000162,416297324389,5273607892830 %N A127005 Numerators of convergents to Khinchin's constant. %H A127005 G. C. Greubel, <a href="/A127005/b127005.txt">Table of n, a(n) for n = 1..1000</a> %H A127005 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KhinchinsConstant.html">Khinchin's Constant</a> %H A127005 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KhinchinsConstantDigits.html">Khinchin's Constant Digits</a> %H A127005 Wikipedia, <a href="http://en.wikipedia.org/wiki/Khinchin%27s_constant">Khinchin's constant</a> %e A127005 2, 3, 8/3, 43/16, 51/19, 94/35, 239/89, 333/124, 572/213, 2049/763, ... %t A127005 Numerator[Convergents[ContinuedFraction[Khinchin, 30]]] (* _G. C. Greubel_, May 30 2019 *) %o A127005 (Sage) [continued_fraction(khinchin).convergent(n).numerator() for n in (0..30)] # _G. C. Greubel_, May 30 2019 %Y A127005 Cf. A002210, A002211, A127006. %K A127005 nonn %O A127005 1,1 %A A127005 _Eric W. Weisstein_, Jan 02 2007