This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127006 #13 Feb 16 2025 08:33:04 %S A127006 1,1,3,16,19,35,89,124,213,763,7843,16449,24292,89325,202942,4959933, %T A127006 5162875,20448558,46059991,158628531,204688522,363317053,568005575, %U A127006 51483818803,103535643181,155019461984,1963769186989,2118788648973 %N A127006 Denominators of convergents to Khinchin's constant. %H A127006 G. C. Greubel, <a href="/A127006/b127006.txt">Table of n, a(n) for n = 1..1000</a> %H A127006 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KhinchinsConstant.html">Khinchin's Constant</a> %H A127006 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KhinchinsConstantDigits.html">Khinchin's Constant Digits</a> %H A127006 Wikipedia, <a href="http://en.wikipedia.org/wiki/Khinchin%27s_constant">Khinchin's constant</a> %e A127006 2, 3, 8/3, 43/16, 51/19, 94/35, 239/89, 333/124, 572/213, 2049/763, ... %t A127006 Denominator[Convergents[ContinuedFraction[Khinchin, 30]]] (* _G. C. Greubel_, May 30 2019 *) %o A127006 (Sage) [continued_fraction(khinchin).convergent(n).denominator() for n in (0..30)] # _G. C. Greubel_, May 30 2019 %Y A127006 Cf. A002210, A002211, A127005. %K A127006 nonn %O A127006 1,3 %A A127006 _Eric W. Weisstein_, Jan 02 2007