A127015
Digits of the 2-adic integer lim_{n->oo} A127014(n).
Original entry on oeis.org
1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1
Offset: 1
Kyle Schalm (kschalm(AT)math.utexas.edu), Jan 07 2007
In 2-adic notation (aka reverse binary) A127014(26) = 11001110010100010100110001.
- N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta-Functions, 2nd ed., Springer, New York, 1996.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
A138761
a(n) is the smallest member of A000522 divisible by 2^n, where A000522(m) = total number of arrangements of a set with m elements.
Original entry on oeis.org
1, 2, 16, 16, 16, 330665665962404000, 4216377920843140187197325631474390438452208808916276571342090223552
Offset: 0
a(5) = A000522(19) = 330665665962404000 because that is the smallest member of A000522 divisible by 2^5.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
- Jean-François Alcover, Table of n, a(n) for n = 0..9
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, arXiv:0709.0671 [math.NT], 2007-2009.
- Index entries for sequences related to factorial numbers
-
a522[n_] := E Gamma[n + 1, 1];
(* b = A127014 *)
b[1] = 1; b[n_] := b[n] = For[k = b[n - 1], True, k++, If[Mod[a522[k], 2^n] == 0, Return[k]]];
a[0] = 1; a[n_] := a522[b[n]];
Table[a[n], {n, 0, 6}] (* Jean-François Alcover, Feb 20 2019 *)
Showing 1-2 of 2 results.
Comments