This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127057 #12 Sep 08 2022 08:45:29 %S A127057 1,3,1,4,1,1,7,3,1,1,6,1,1,1,1,12,6,3,1,1,1,8,1,1,1,1,1,1,15,7,3,3,1, %T A127057 1,1,1,13,4,4,1,1,1,1,1,1,18,8,3,3,3,1,1,1,1,1,12,1,1,1,1,1,1,1,1,1,1, %U A127057 28,16,10,6,3,3,1,1,1,1,1,1,14,1,1,1,1,1,1,1,1,1,1,1,1,24,10,3,3,3,3,3,1,1 %N A127057 Triangle T(n,k), partial row sums of the n-th row of A127013 read right to left. %C A127057 Also partial row sums of the n-th row of A126988 read left to right. - _Reinhard Zumkeller_, Jan 21 2014 %H A127057 Reinhard Zumkeller, <a href="/A127057/b127057.txt">Rows n = 1..125 of triangle, flattened</a> %F A127057 T(n,k) = Sum_{i=1..n-k+1} A127013(n,i), n>=1, 1<=k<=n. %F A127057 T(n,k) = Sum_{i=k..n} A126988(n,i). %F A127057 Row sums: Sum_{k=1..n} T(n,k) = A038040(n). %F A127057 T(n,1) = A000203(n). %F A127057 T = A126988 * M as infinite lower triangular matrices, M = (1; 1, 1; 1, 1, 1; ...). %e A127057 The triangle starts %e A127057 1; %e A127057 3, 1; %e A127057 4, 1, 1; %e A127057 7, 3, 1, 1; %e A127057 6, 1, 1, 1, 1; %e A127057 12, 6, 3, 1, 1, 1; %e A127057 8, 1, 1, 1, 1, 1, 1; %e A127057 15, 7, 3, 3, 1, 1, 1, 1; %e A127057 13, 4, 4, 1, 1, 1, 1, 1, 1; %e A127057 18, 8, 3, 3, 3, 1, 1, 1, 1, 1; ... %t A127057 A126988[n_, m_]:= If[Mod[n, m]==0, n/m, 0]; %t A127057 T[n_, m_]:= Sum[A126988[n, j], {j,m,n}]; %t A127057 Table[T[n, m], {n,1,12}, {m,1,n}]//Flatten (* _G. C. Greubel_, Jun 03 2019 *) %o A127057 (Haskell) %o A127057 a127057 n k = a127057_tabl !! (n-1) !! (k-1) %o A127057 a127057_row n = a127057_tabl !! (n-1) %o A127057 a127057_tabl = map (scanr1 (+)) a126988_tabl %o A127057 -- _Reinhard Zumkeller_, Jan 21 2014 %o A127057 (PARI) %o A127057 A126988(n, k) = if(n%k==0, n/k, 0); %o A127057 T(n,k) = sum(j=k,n, A126988(n,j)); %o A127057 for(n=1, 12, for(k=1,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Jun 03 2019 %o A127057 (Magma) %o A127057 A126988:= func< n,k | (n mod k) eq 0 select n/k else 0 >; %o A127057 T:= func< n,k | (&+[A126988(n, j): j in [k..n]]) >; %o A127057 [[T(n,k): k in [1..n]]: n in [1..12]]; // _G. C. Greubel_, Jun 03 2019 %o A127057 (Sage) %o A127057 def A126988(n, k): %o A127057 if (n%k==0): return n/k %o A127057 else: return 0 %o A127057 def T(n,k): return sum(A126988(n,j) for j in (k..n)) %o A127057 [[T(n, k) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Jun 03 2019 %Y A127057 Cf. A126988, A127013, A000203, A038040. %K A127057 nonn,tabl %O A127057 1,2 %A A127057 _Gary W. Adamson_, Jan 04 2007 %E A127057 Edited and extended by _R. J. Mathar_, Jul 23 2008