This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127068 #16 Sep 08 2022 08:45:29 %S A127068 1,3,4,-30,-216,420,14400,22680,-1411200,-8482320,195955200, %T A127068 2399997600,-36883123200,-788107320000,9066542284800,318173519664000, %U A127068 -2824576634880000,-159078423407904000,1088403529973760000,97970873094110016000,-508476519708917760000,-73631427647097640320000 %N A127068 Let d(m, 0) = 1, d(m, 1) = m, and d(m, k) = (m - k + 1)*d(m+1, k-1) - (k-1)*(m+1) d(m+2, k-2). Sequence gives d(3,n). %D A127068 V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007. %H A127068 G. C. Greubel, <a href="/A127068/b127068.txt">Table of n, a(n) for n = 0..150</a> %F A127068 From _Peter Bala_, Feb 15 2022: (Start) %F A127068 Conjectures: %F A127068 a(2*n) = (-1)^(n+1)*(n + 1)*(2*n - 1)*(2*n)!. %F A127068 a(2*n+1) = - 2*(2*n + 3)*(3*n - 2)*a(2*n-1) - 4*(n - 1)*(2*n + 3)*(4*n^2 - 1)*a(2*n-3) with a(1) = 3 and a(3) = -30. (End) %p A127068 T:= proc(n, k) option remember; %p A127068 if k=0 then 1 %p A127068 elif k=1 then n %p A127068 else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) %p A127068 fi; end: %p A127068 seq(T(3, n), n=0..25); # _G. C. Greubel_, Jan 29 2020 %t A127068 T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[3, n], {n,0,25}] (* _G. C. Greubel_, Jan 29 2020 *) %o A127068 (PARI) T(n, k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) )); %o A127068 vector(25, n, T(3, (n-1)) ) \\ _G. C. Greubel_, Jan 29 2020 %o A127068 (Magma) %o A127068 function T(n, k) %o A127068 if k eq 0 then return 1; %o A127068 elif k eq 1 then return n; %o A127068 else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2); %o A127068 end if; return T; end function; %o A127068 [T(3, n): n in [0..25]]; // _G. C. Greubel_, Jan 29 2020 %o A127068 (Sage) %o A127068 @CachedFunction %o A127068 def T(n, k): %o A127068 if (k==0): return 1 %o A127068 elif (k==1): return n %o A127068 else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) %o A127068 [T(3, n) for n in (0..25)] # _G. C. Greubel_, Jan 29 2020 %Y A127068 A column of A105937. %K A127068 sign %O A127068 0,2 %A A127068 Vincent v.d. Noort, Mar 21 2007