cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127096 Triangle T(n,m) = A000012*A127094 read by rows.

Original entry on oeis.org

1, 3, 1, 6, 1, 1, 10, 1, 3, 1, 15, 1, 3, 1, 1, 21, 1, 3, 4, 3, 1, 28, 1, 3, 4, 3, 1, 1, 36, 1, 3, 4, 7, 1, 3, 1, 45, 1, 3, 4, 7, 1, 6, 1, 1, 55, 1, 3, 4, 7, 6, 6, 1, 3, 1, 66, 1, 3, 4, 7, 6, 6, 1, 3, 1, 1, 78, 1, 3, 4, 7, 6, 12, 1, 7, 4, 3, 1, 91, 1, 3, 4, 7, 6, 12, 1, 7, 4, 3, 1, 1, 105, 1, 3, 4, 7, 6, 12, 8, 7, 4, 3, 1, 3, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 05 2007

Keywords

Comments

Consider A000012 as a lower-left all-1's triangle, and build the matrix product by multiplication with A127094 from the right.

Examples

			First few rows of the triangle are:
   1;
   3, 1,
   6, 1, 1;
  10, 1, 3, 1;
  15, 1, 3, 1, 1;
  21, 1, 3, 4, 3, 1;
  28, 1, 3, 4, 3, 1, 1;
  ...
		

Crossrefs

Programs

  • Maple
    A127093 := proc(n,m) if n mod m = 0 then m; else 0 ; fi; end:
    A127094 := proc(n,m) A127093(n, n-m+1) ; end:
    A127096 := proc(n,m) add( A127094(j,m),j=m..n) ; end:
    for n from 1 to 15 do for m from 1 to n do printf("%d,",A127096(n,m)) ; od: od: # R. J. Mathar, Aug 18 2009
  • Mathematica
    T[n_, m_] := Sum[1 + Mod[j, m - j - 1] - Mod[1 + j, m - j - 1], {j, m, n}];
    Table[T[n, m], {n, 1, 14}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 15 2023 *)

Formula

T(n,m) = Sum_{j=m..n} A000012(n,j)*A127094(j,m) = Sum_{j=m..n} A127094(j,m).

Extensions

Edited and extended by R. J. Mathar, Aug 18 2009