A127139 Inverse triangle of A126988.
1, -2, 1, -3, 0, 1, 0, -2, 0, 1, -5, 0, 0, 0, 1, 6, -3, -2, 0, 0, 1, -7, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 1, 0, 0, -3, 0, 0, 0, 0, 0, 1, 10, -5, 0, 0, -2, 0, 0, 0, 0, 1
Offset: 1
Examples
First few rows of the triangle: 1; -2, 1; -3, 0, 1; 0, -2, 0, 1; -5, 0, 0, 0, 1; 6, -3, -2, 0, 0, 1; -7, 0, 0, 0, 0, 0, 1; ...
Programs
-
Mathematica
nn = 10; s = 0; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k == 1, -Sum[t[n, k + i]/(i + 1)^(s - 1), {i, 1, n - 1}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Mar 12 2016 *)
Formula
Inverse triangle of A126988.
Comments