A127156 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n starting with exactly k consecutive pyramids. A pyramid in a Dyck path is a factor of the form U^j D^j (j>0), starting at the x-axis. Here U=(1,1) and D=(1,-1). This definition differs from the one in A091866.
1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 5, 2, 3, 3, 1, 19, 7, 5, 6, 4, 1, 67, 26, 12, 11, 10, 5, 1, 232, 93, 38, 23, 21, 15, 6, 1, 804, 325, 131, 61, 44, 36, 21, 7, 1, 2806, 1129, 456, 192, 105, 80, 57, 28, 8, 1, 9878, 3935, 1585, 648, 297, 185, 137, 85, 36, 9, 1, 35072, 13813, 5520
Offset: 0
Examples
T(5,2)=5 because we have (UDUD)UUDUDD, (UUDDUUUDDD), (UUUDDDUUDD), (UDUUUUDDDD) and (UUUUDDDDUD) (the initial 2 pyramids are shown between parentheses). Triangle starts: 1; 0,1; 0,1,1; 1,1,2,1; 5,2,3,3,1; 19,7,5,6,4,1;
Programs
-
Maple
C:=(1-sqrt(1-4*z))/2/z: G:=(1-2*z)*C/(1-z-t*z): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(expand(coeff(Gser,z^n))) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
Formula
G.f.=G(t,z)=(1-2z)C/(1-z-tz), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function. T(n,k)=T(n-1,k)+T(n-1,k-1) for n,k>=1.
Comments