This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127206 #13 Sep 08 2022 08:45:29 %S A127206 1,765,39269,70260,71399,85764,100079,167789,218229,307020,388449, %T A127206 468945,514760,553400,568904,782595,826284,1160199,1220430,1403775, %U A127206 1633020,1714739,1727930,1788144,1932900,1958705,2023119,2037450,2178804,2185520,2193969,2238474,2264774 %N A127206 Numbers k such that k^j + (k+1)^j is prime for j = 1, 2, 4, 8. %C A127206 k^j + (k+1)^j is prime only for j = power of 2. %C A127206 Subset of A128780 which is a subset of A068501. %H A127206 Vincenzo Librandi, <a href="/A127206/b127206.txt">Table of n, a(n) for n = 1..331</a> %e A127206 {765 + 766, 765^2 + 766^2, 765^4 + 766^4, 765^8 + 766^8} = {1531, 1171981, 686770904161, 235828747162526935093921}, all prime. %t A127206 Do[If[PrimeQ[2n + 1] && PrimeQ[n^2 + (n+1)^2] && PrimeQ[n^4 + (n+1)^4] && PrimeQ[n^8 + (n+1)^8], Print[n]], {n, 5*10^6}] (* _Ryan Propper_, Mar 30 2007 *) %o A127206 (Magma) [n: n in [1..3*10^6]| IsPrime(2*n+1) and IsPrime(n^2+(n+1)^2) and IsPrime(n^4+(n+1)^4) and IsPrime(n^8+(n+1)^8)]; // _Vincenzo Librandi_, Nov 18 2018 %Y A127206 Cf. A068501, A128780. %K A127206 nonn %O A127206 1,2 %A A127206 _Zak Seidov_, Mar 28 2007 %E A127206 More terms from _Ryan Propper_, Mar 30 2007