This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127211 #28 Apr 15 2024 13:09:03 %S A127211 2,4,48,256,1792,11264,73728,475136,3080192,19922944,128974848, %T A127211 834666496,5402263552,34963718144,226291089408,1464583847936, %U A127211 9478992822272,61349312856064,397061136580608,2569833552019456,16632312393367552,107646586405781504,696703343917006848 %N A127211 a(n) = 4^n*Lucas(n), where Lucas = A000032. %H A127211 G. C. Greubel, <a href="/A127211/b127211.txt">Table of n, a(n) for n = 0..1225</a> %H A127211 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,16). %F A127211 a(n) = Trace of matrix [({4,4},{4,0})^n]. %F A127211 a(n) = 4^n * Trace of matrix [({1,1},{1,0})^n]. %F A127211 From _Colin Barker_, Sep 02 2013: (Start) %F A127211 a(n) = 4*a(n-1) + 16*a(n-2). %F A127211 G.f.: 2*x*(2*x-1)/(16*x^2+4*x-1). (End) %F A127211 From _Peter Luschny_, Apr 15 2024: (Start) %F A127211 a(n) = 2^n*((1 - sqrt(5))^n + (1 + sqrt(5))^n). %F A127211 a(n) = 4^n*(Fibonacci(n+1) + Fibonacci(n-1)). (End) %F A127211 a(n) = 2^n*A087131(n). - _Michel Marcus_, Apr 15 2024 %p A127211 a:= n-> 4^n*(<<1|1>, <1|0>>^n. <<2, -1>>)[1, 1]: %p A127211 seq(a(n), n=0..22); # _Alois P. Heinz_, Apr 15 2024 %t A127211 Table[4^n Tr[MatrixPower[{{1, 1}, {1, 0}}, n]], {n, 0, 20}] %t A127211 Table[4^n*LucasL[n], {n, 0, 50}] (* _G. C. Greubel_, Dec 18 2017 *) %o A127211 (PARI) my(x='x + O('x^30)); Vec(-4*x*(8*x+1)/(16*x^2+4*x-1)) \\ _G. C. Greubel_, Dec 18 2017 %o A127211 (Magma) [4^n*Lucas(n): n in [0..30]]; // _G. C. Greubel_, Dec 18 2017 %Y A127211 Cf. A000032, A000204, A087131, A087131, A127210, A127212, A127213, A127214, A127215, A127216. %K A127211 nonn,easy %O A127211 0,1 %A A127211 _Artur Jasinski_, Jan 09 2007 %E A127211 a(0)=2 prepended by _Alois P. Heinz_, Apr 15 2024