A127236 A Thue-Morse binomial triangle.
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 1, 1; 1, 0, 0, 1; 1, 1, 0, 1, 1; 1, 0, 0, 0, 0, 1; 1, 0, 0, 0, 0, 0, 1; 1, 1, 1, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1, 1, 1, 1; 1, 0, 0, 1, 0, 0, 1, 0, 0, 1; 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
Links
- Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
Programs
-
Maple
tm:= proc(n) option remember; if n::even then procname(n/2^padic:-ordp(n,2)) else 1 - procname((n-1)/2) fi end proc: tm(0):= 0: seq(seq(tm(binomial(n,k)),k=0..n),n=0..15); # Robert Israel, May 07 2019
-
Mathematica
T[n_, k_] := ThueMorse[Binomial[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 04 2020 *)
Formula
Number triangle T(n,k) = A010060(binomial(n,k)).
Comments