cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127236 A Thue-Morse binomial triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 10 2007

Keywords

Comments

Row sums are A127237. Diagonal sums are A127238. Central coefficients T(2n,n) are A127239.

Examples

			Triangle begins
  1;
  1, 1;
  1, 1, 1;
  1, 0, 0, 1;
  1, 1, 0, 1, 1;
  1, 0, 0, 0, 0, 1;
  1, 0, 0, 0, 0, 0, 1;
  1, 1, 1, 1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1, 1, 1;
  1, 0, 0, 1, 0, 0, 1, 0, 0, 1;
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Programs

  • Maple
    tm:= proc(n) option remember;
      if n::even then procname(n/2^padic:-ordp(n,2))
      else 1 - procname((n-1)/2)
      fi
    end proc:
    tm(0):= 0:
    seq(seq(tm(binomial(n,k)),k=0..n),n=0..15); # Robert Israel, May 07 2019
  • Mathematica
    T[n_, k_] := ThueMorse[Binomial[n, k]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 04 2020 *)

Formula

Number triangle T(n,k) = A010060(binomial(n,k)).