A127244 A Thue-Morse signed falling factorial triangle.
1, -1, 1, 1, -1, 1, 0, 0, 0, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 1, -1, 1; 0, 0, 0, 1; 0, 0, 0, -1, 1; 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, -1, 1; 0, 0, 0, 0, 0, 0, 1, -1, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; ...
Programs
-
Mathematica
T[n_, k_] := (-1)^(n-k) * Product[ThueMorse[i], {i, k+1, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 04 2023 *)
Formula
T(n,k) = (-1)^(n-k) * Product_{j=0..n-k-1} A010060(n-j) * [k<=n].
Extensions
More terms from Amiram Eldar, Aug 04 2023