This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127336 #33 Apr 24 2023 12:59:58 %S A127336 100,127,155,187,221,253,287,323,363,401,439,479,515,553,593,635,679, %T A127336 721,763,803,841,881,929,977,1025,1067,1115,1163,1213,1267,1321,1367, %U A127336 1415,1459,1511,1555,1601,1643,1691,1747,1801,1851,1903,1951,1999,2053 %N A127336 Numbers that are the sum of 9 consecutive primes. %C A127336 a(n) = absolute value of coefficient of x^8 of the polynomial Product_{j=0..8}(x - prime(n+j)) of degree 9; the roots of this polynomial are prime(n), ..., prime(n+8). %F A127336 a(n) = A127335(n)+A000040(n+8). - _R. J. Mathar_, Apr 24 2023 %t A127336 A127336 = {}; Do[AppendTo[A127336, Sum[Prime[x + n], {n, 0, 8}]], {x, 1, 50}]; A127336 (* _Artur Jasinski_, Jan 11 2007 *) %t A127336 Table[Plus@@Prime[Range[n, n + 8]], {n, 50}] (* _Alonso del Arte_, Aug 27 2013 *) %t A127336 Total/@Partition[Prime[Range[60]],9,1] (* _Harvey P. Dale_, Nov 18 2020 *) %o A127336 (PARI) {m=46;k=9;for(n=1,m,print1(a=sum(j=0,k-1,prime(n+j)),","))} \\ _Klaus Brockhaus_, Jan 13 2007 %o A127336 {m=46;k=9;for(n=1,m,print1(abs(polcoeff(prod(j=0,k-1,(x-prime(n+j))),k-1)),","))} \\ _Klaus Brockhaus_, Jan 13 2007 %o A127336 (Magma) [&+[ NthPrime(n+k): k in [0..8] ]: n in [1..100] ]; // _Vincenzo Librandi_, Apr 03 2011 %o A127336 (Python) %o A127336 from sympy import prime %o A127336 def a(x): return sum([prime(x + n) for n in range(9)]) %o A127336 print([a(i) for i in range(1, 50)]) # _Indranil Ghosh_, Mar 18 2017 %Y A127336 Cf. A011974, A001043, A034961, A034963, A034964, A127333, A127334, A127335, A127337, A127338, A127339, A082251, A228200. %K A127336 nonn,easy %O A127336 1,1 %A A127336 _Artur Jasinski_, Jan 11 2007 %E A127336 Edited by _Klaus Brockhaus_, Jan 13 2007