This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127337 #35 Apr 24 2023 12:56:09 %S A127337 129,158,192,228,264,300,340,382,424,468,510,552,594,636,682,732,780, %T A127337 824,870,912,954,1008,1060,1114,1164,1216,1266,1320,1376,1434,1494, %U A127337 1546,1596,1650,1704,1752,1800,1854,1914,1974,2030,2084,2142,2192,2250,2310,2374 %N A127337 Numbers that are the sum of 10 consecutive primes. %C A127337 a(n) is the absolute value of coefficient of x^9 of the polynomial Product_{j=0..9} (x - prime(n+j)) of degree 10; the roots of this polynomial are prime(n), ..., prime(n+9). %H A127337 Zak Seidov, <a href="/A127337/b127337.txt">Table of n, a(n) for n = 1..1000</a> %F A127337 a(n) = A127336(n)+A000040(n+9). - _R. J. Mathar_, Apr 24 2023 %p A127337 A127337 := proc(n) %p A127337 local i ; %p A127337 add(ithprime(n+i),i=0..9) ; %p A127337 end proc: %p A127337 seq(A127337(n),n=1..30) ; # _R. J. Mathar_, Apr 24 2023 %t A127337 a = {}; Do[AppendTo[a, Sum[Prime[x + n], {n, 0, 9}]], {x, 1, 50}]; a %t A127337 Table[Plus@@Prime[Range[n, n + 9]], {n, 50}] (* _Alonso del Arte_, Feb 15 2011 *) %t A127337 ListConvolve[ConstantArray[1, 10], Prime[Range[50]]] %t A127337 Total/@Partition[Prime[Range[60]],10,1] (* _Harvey P. Dale_, Jan 31 2013 *) %o A127337 (PARI) {m=46;k=10;for(n=1,m,print1(a=sum(j=0,k-1,prime(n+j)),","))} \\ _Klaus Brockhaus_, Jan 13 2007 %o A127337 (PARI) {m=46;k=10;for(n=1,m,print1(abs(polcoeff(prod(j=0,k-1,(x-prime(n+j))),k-1)),","))} \\ _Klaus Brockhaus_, Jan 13 2007 %o A127337 (Magma) [&+[ NthPrime(n+k): k in [0..9] ]: n in [1..90] ]; // _Vincenzo Librandi_, Apr 03 2011 %o A127337 (Python) %o A127337 from sympy import prime %o A127337 def a(n): return sum(prime(n + i) for i in range(10)) %o A127337 print([a(n) for n in range(1, 48)]) # _Michael S. Branicky_, Dec 09 2021 %o A127337 (Python) # faster version for generating initial segment of sequence %o A127337 from sympy import nextprime %o A127337 def aupton(terms): %o A127337 alst, plst = [], [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] %o A127337 for n in range(terms): %o A127337 alst.append(sum(plst)) %o A127337 plst = plst[1:] + [nextprime(plst[-1])] %o A127337 return alst %o A127337 print(aupton(47)) # _Michael S. Branicky_, Dec 09 2021 %Y A127337 Cf. A011974, A001043, A034961, A034963, A034964, A127333, A127334, A127335, A127336, A127338, A127339. %K A127337 nonn %O A127337 1,1 %A A127337 _Artur Jasinski_, Jan 11 2007 %E A127337 Edited by _Klaus Brockhaus_, Jan 13 2007