cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127451 Beatty sequence for 1/(1 - e^Pi + Pi^e), complement of A127450.

This page as a plain text file.
%I A127451 #28 May 30 2025 15:35:54
%S A127451 3,6,9,12,15,18,21,25,28,31,34,37,40,43,47,50,53,56,59,62,65,69,72,75,
%T A127451 78,81,84,87,91,94,97,100,103,106,109,113,116,119,122,125,128,131,135,
%U A127451 138,141,144,147,150,153,157,160,163,166,169,172,175,178,182,185,188
%N A127451 Beatty sequence for 1/(1 - e^Pi + Pi^e), complement of A127450.
%C A127451 Differs from A022844 first at a(57). - _L. Edson Jeffery_, Dec 01 2013
%C A127451 1/(1 - e^Pi + Pi^e) = 3.140061643.., so a(n)<=A022844(n). - _R. J. Mathar_, May 30 2025
%H A127451 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>.
%H A127451 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F A127451 a(n) = floor(n/(1 - e^Pi + Pi^e))
%t A127451 Table[Floor[n/(1 - Exp[Pi] + Pi^E)], {n, 60}]
%Y A127451 Cf. A022844, A059563, A063504.
%K A127451 easy,nonn
%O A127451 1,1
%A A127451 _Robert G. Wilson v_, Jan 14 2007