This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127493 #21 Jun 07 2025 23:56:04 %S A127493 1,5,8,9,22,29,45,49,60,69,87,89,90,107,114,124,125,131,134,138,145, %T A127493 156,171,183,188,191,203,204,207,212,219,255,261,290,298,303,329,330, %U A127493 343,344,349,354,378,397,398,400,403,454,456,466,474,515,549,560,570,578 %N A127493 Indices k such that the coefficient [x^1] of the polynomial Product_{j=0..4} (x-prime(k+j)) is prime. %C A127493 A fifth-order polynomial with 5 roots which are the five consecutive primes from prime(k) onward is defined by Product_{j=0..4} (x-prime(k+j)). The sequence is a catalog of the cases where the coefficient of its linear term is prime. %C A127493 Indices k such that e4(prime(k), prime(k+1), ..., prime(k+4)) is prime, where e4 is the elementary symmetric polynomial summing all products of four variables. - _Charles R Greathouse IV_, Jun 15 2015 %H A127493 Charles R Greathouse IV, <a href="/A127493/b127493.txt">Table of n, a(n) for n = 1..10000</a> %e A127493 For k=2, the polynomial is (x-3)*(x-5)*(x-7)*(x-11)*(x-13) = x^5-39*x^4+574*x^3-3954*x^2+12673*x-15015, where 12673 is not prime, so k=2 is not in the sequence. %e A127493 For k=5, the polynomial is x^5-83*x^4+2710*x^3-43490*x^2+342889*x-1062347, where 342889 is prime, so k=5 is in the sequence. %p A127493 isA127493 := proc(k) %p A127493 local x,j ; %p A127493 mul( x-ithprime(k+j),j=0..4) ; %p A127493 expand(%) ; %p A127493 isprime(coeff(%,x,1)) ; %p A127493 end proc: %p A127493 A127493 := proc(n) %p A127493 option remember ; %p A127493 if n = 1 then %p A127493 1; %p A127493 else %p A127493 for a from procname(n-1)+1 do %p A127493 if isA127493(a) then %p A127493 return a; %p A127493 end if; %p A127493 end do: %p A127493 end if; %p A127493 end proc: %p A127493 seq(A127493(n),n=1..60) ; # _R. J. Mathar_, Apr 23 2023 %t A127493 a = {}; Do[If[PrimeQ[(Prime[x] Prime[x + 1]Prime[x + 2]Prime[x + 3] + Prime[x] Prime[x + 2]Prime[x + 3]Prime[x + 4] + Prime[x] Prime[x + 1]Prime[x + 3]Prime[x + 4] + Prime[x] Prime[x + 1]Prime[x + 2]Prime[x + 4] + Prime[x + 1] Prime[x + 2]Prime[x + 3]Prime[x + 4])], AppendTo[a, x]], {x, 1, 1000}]; a %o A127493 (PARI) e4(v)=sum(i=1,#v-3, v[i]*sum(j=i+1,#v-2, v[j]*sum(k=j+1,#v-1, v[k]*vecsum(v[k+1..#v])))) %o A127493 pr(p, n)=my(v=vector(n)); v[1]=p; for(i=2,#v, v[i]=nextprime(v[i-1]+1)); v %o A127493 is(n,p=prime(n))=isprime(e4(pr(p,5))) %o A127493 v=List(); n=0; forprime(p=2,1e4, if(is(n++,p), listput(v,n))); Vec(v) \\ _Charles R Greathouse IV_, Jun 15 2015 %Y A127493 Cf. A001043, A034961, A034963, A034964, A127333-A127343, A127345-A127351, A037171, A034962, A034965, A082246, A082251, A070934, A006094, A046301-A046303, A046324-A046327, A127489, A127491, A127492, A024449. %K A127493 nonn %O A127493 1,2 %A A127493 _Artur Jasinski_, Jan 16 2007 %E A127493 Definition and comment rephrased and examples added by _R. J. Mathar_, Oct 01 2009