A127509 Number of n-tuples where each entry is chosen from the subsets of {1,2,3} such that the intersection of all n entries contains exactly one element.
3, 27, 147, 675, 2883, 11907, 48387, 195075, 783363, 3139587, 12570627, 50307075, 201277443, 805208067, 3221028867, 12884508675, 51538821123, 206156857347, 824630575107, 3298528591875, 13194126950403, 52776532967427
Offset: 1
Keywords
Examples
a(1)=3 because the three sequences of length one are: ({1}), ({2}), ({3}). a(2)=27 because the twenty-seven sequences of length two are: ({1},{1}), ({2},{2}), ({3},{3}), ({1},{1,2}), ({1},{1,3}), ({2},{1,2}), ({2},{2,3}), ({3},{1,3}), ({3},{2,3}), ({1,2},{1}), ({1,3},{1}), ({1,2},{2}), ({2,3},{2}), ({1,3},{3}), ({2,3},{3}), ({1},{1,2,3}), ({2},{1,2,3}), ({3},{1,2,3}), ({1,2,3},{1}), ({1,2,3},{2}), ({1,2,3},{3}), ({1,2},{1,3}), ({1,3},{1,2}), ({1,2},{2,3}), ({2,3},{1,2}), ({1,3},{2,3}), ({2,3},{1,3}).
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Programs
-
Maple
for k from 1 to 41 do 3*(2^k-1)^2; od;
-
Mathematica
LinearRecurrence[{7,-14,8},{3,27,147},22] (* James C. McMahon, Jan 02 2025 *)
Formula
a(n) = 3*(2^n-1)^2.
G.f.: 3*x*(1+2*x)/(1-7*x+14*x^2-8*x^3). [Colin Barker, Feb 08 2012]
Comments