A127530 Triangle read by rows: T(n,k) is the number of binary trees with n edges and k jumps (n >= 0, 0 <= k <= max(0,ceiling(n/2)-1) ).
1, 2, 5, 12, 2, 29, 13, 70, 60, 2, 169, 235, 25, 408, 836, 184, 2, 985, 2790, 1046, 41, 2378, 8896, 5080, 440, 2, 5741, 27410, 22164, 3410, 61, 13860, 82230, 89440, 21580, 900, 2, 33461, 241467, 340058, 118714, 9115, 85, 80782, 696732, 1233562, 588952
Offset: 0
Examples
Triangle starts: 1; 2; 5; 12, 2; 29, 13; 70, 60, 2; 169, 235, 25;
Links
- W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
Programs
-
Maple
G:= (-z^2-2*z+z^2*t+1-sqrt(z^4+4*z^3-2*z^4*t+2*z^2-4*z^3*t-4*z+z^4*t^2-2*z^2*t+1))/2/t/z^2: Gser:=simplify(series(G,z=0,17)): for n from 1 to 14 do P[n]:=sort(coeff(Gser,z,n)) od: 1; for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..ceil(n/2)-1) od; # yields sequence in triangular form
-
Mathematica
n = 13; g[t_, z_] := (-z^2 - 2z + z^2*t + 1 - Sqrt[z^4 + 4z^3 - 2z^4*t + 2z^2 - 4z^3*t - 4z + z^4*t^2 - 2z^2*t + 1])/2/t/z^2; Flatten[ CoefficientList[#1, t] & /@ CoefficientList[Simplify[Series[g[t, z], {z, 0, n}]], z]] (* Jean-François Alcover, Jul 22 2011, after g.f. *)
Comments