This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A127585 #11 Feb 16 2025 08:33:04 %S A127585 1,1,18,345,10243,437769,25260317,1873346813,172254143084, %T A127585 19114537903943,2506628271002200,382005168783773474, %U A127585 66734799966312471195,13212509243902296154744,2936153006332857671962341,726345521215072990990045577,198595552305314906351047196508 %N A127585 Exponential error term from Stirling's Approximation. %H A127585 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StirlingsSeries.html">Stirling's Series</a>. %H A127585 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StirlingsApproximation.html">Stirling's Approximation</a>. %F A127585 a(n) = floor(sqrt(2*Pi)*(n^n)*(n^(n/2))) - n!. %e A127585 a(1) = Floor[(sqrt(2*pi) * (1^1) * (1^(1/2))) - 1! ] = Floor(1.50662827) = 1. %e A127585 a(2) = Floor[(sqrt(2*pi) * (2^2) * (2^(2/2))) - 2! ] = Floor(18.0530262) = 18. %Y A127585 Cf. A005394, A046968, A046969, A055775, A127426. %K A127585 easy,nonn %O A127585 0,3 %A A127585 _Jonathan Vos Post_, Apr 02 2007 %E A127585 More terms from _Alois P. Heinz_, Jan 24 2024