cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127606 a(n) = 2^(2*n*n) * Product_{1<=i,j<=n} (cos(i*Pi/(2*n+1))^2 + sin(j*Pi/(2*n+1))^2).

This page as a plain text file.
%I A127606 #29 Nov 08 2023 01:48:04
%S A127606 1,4,176,79808,372713728,17931360207872,8887976555024756736,
%T A127606 45390122553039546330628096,2388340820825093234015277927170048,
%U A127606 1294826675280341699389150405743029631844352
%N A127606 a(n) = 2^(2*n*n) * Product_{1<=i,j<=n} (cos(i*Pi/(2*n+1))^2 + sin(j*Pi/(2*n+1))^2).
%C A127606 a(n)/4^n is an integer. - _Seiichi Manyama_, Dec 31 2020
%H A127606 Seiichi Manyama, <a href="/A127606/b127606.txt">Table of n, a(n) for n = 0..40</a>
%H A127606 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>
%H A127606 Wikipedia, <a href="https://en.wikipedia.org/wiki/Resultant">Resultant</a>
%F A127606 a(n) = 2^n * sqrt(Resultant(T_{2*n+1}(i*x/2), U_{2*n}(x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - _Seiichi Manyama_, Jan 09 2021
%F A127606 a(n) ~ 2^(1/8) * exp(G*(2*n + 1)^2/Pi) / (1 + sqrt(2))^(n + 1/2), where G is Catalan's constant A006752. - _Vaclav Kotesovec_, Mar 18 2023
%p A127606 for n from 0 to 12 do a[n]:=2^(2*n*n)*product(product(cos(i*Pi/(2*n+1))^2+ sin(j*Pi/(2*n+1))^2,j=1..n),i=1..n) od: seq(round(evalf(a[n],300)),n=0..12);
%t A127606 Table[2^(2*n^2) * Product[Product[Cos[i*Pi/(2*n + 1)]^2 + Sin[j*Pi/(2*n + 1)]^2, {i, 1, n}], {j, 1, n}], {n, 0, 15}] // Round (* _Vaclav Kotesovec_, Mar 18 2023 *)
%o A127606 (PARI) default(realprecision, 120);
%o A127606 {a(n) = round(prod(i=1, n, prod(j=1, n, 4*cos(i*Pi/(2*n+1))^2+4*sin(j*Pi/(2*n+1))^2)))} \\ _Seiichi Manyama_, Dec 31 2020
%o A127606 (PARI) {a(n) = sqrtint(4^n*polresultant(polchebyshev(2*n+1, 1, I*x/2), polchebyshev(2*n, 2, x/2)))} \\ _Seiichi Manyama_, Jan 09 2021
%o A127606 (Python)
%o A127606 from math import isqrt
%o A127606 from sympy.abc import x
%o A127606 from sympy import resultant, chebyshevt, chebyshevu, I
%o A127606 def A127606(n): return isqrt(resultant(chebyshevt((n<<1)+1,I*x/2),chebyshevu(n<<1,x/2)))<<n if n else 1 # _Chai Wah Wu_, Nov 07 2023
%Y A127606 Cf. A004003, A127605.
%K A127606 nonn
%O A127606 0,2
%A A127606 _Miklos Kristof_, Apr 03 2007